The cross product

The true vector-vector product in 3-dimensional space.

The cross product is an important operation that takes in two vectors and produces a third vector that is orthogonal to both of them.

Cross product

The previous lecture introduced the dot product of two vectors, which produces a scalar.

In this lecture, we will see a completely different kind of vector-vector product what would result in another vector --- the cross product.

This operation has strong motivation from physics, engineering, and computer graphics (just to name a few areas): We often need to generate a new vector that is orthogonal to a pair of given vectors, and the cross product is a very special way of doing this that also encode additional geometric information.

Motivation: cross products of unit vectors

Starting with the unit vectors $\mathbf{i}$ and $\mathbf{j}$, we expect (demand) the cross product to be an operation that will produce the unit vector $\mathbf{k}$ following the right hand convention. That is, \[ \mathbf{i} \times \mathbf{j} = \mathbf{k}. \]

Such an operation will come in handy in many applications.

Extending on this convention, we are basically requiring that \begin{align*} \mathbf{i} \times \mathbf{j} &= \mathbf{k} & \mathbf{j} \times \mathbf{k} &= \mathbf{i} & \mathbf{k} \times \mathbf{i} &= \mathbf{j} \\ \mathbf{j} \times \mathbf{i} &= - \mathbf{k} & \mathbf{k} \times \mathbf{j} &= - \mathbf{i} & \mathbf{i} \times \mathbf{k} &= - \mathbf{j} . \end{align*}

If we generalize this idea to all vectors in $\mathbf{R}^3$, the resulting operation is the cross product.

Cross product in coordinate

For two vectors, we define \[ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \;\times\; \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}. \]

In the context of this course, the notation $\times$ is only used for cross products, and we will never use it for anything else (neither should you).

We can verify that this definition indeed agrees with our expectation:

$\displaystyle \mathbf{i} \times \mathbf{j}\;\;$ $\displaystyle \; = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} $ $\displaystyle \; = \begin{bmatrix} 0 \cdot 0 - 0 \cdot 1 \\ -(1 \cdot 0 - 0 \cdot 0) \\ 1 \cdot 1 - 0 \cdot 0 \end{bmatrix} $ $\displaystyle \; = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $ $\displaystyle = \mathbf{k} $

Similarly, we can verify all the desired properties we just listed.

Properties of the cross product

From the definition, we can easily verify the following properties of the cross product: For vectors $\mathbf{u}$, $\mathbf{v}$, $\mathbf{w}$ and scalar $k$, \begin{align*} \mathbf{u} \times \mathbf{v} &= - (\mathbf{v} \times \mathbf{u}) & \mathbf{u} \times \mathbf{0} &= \mathbf{0} \\ \mathbf{u} \times (\mathbf{v} + \mathbf{w}) &= (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w}) & \mathbf{0} \times \mathbf{u} &= \mathbf{0} \\ k (\mathbf{u} \times \mathbf{v}) &= (k \, \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k \, \mathbf{v}) & \mathbf{u} \times \mathbf{u} &= \mathbf{0} \end{align*}

These properties (except the first and last one), show the cross product interacts with vector sums and scalar multiplication in expected ways.

The last property $\mathbf{u} \times \mathbf{u} = \mathbf{0}$ may look a bit strange at first. Can you explain why this must be the case?

Computing cross product ("middle school" method)

Recall that, for two vectors, we defined \[ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \] This formula may not be particularly easy to remember. (Although it would be easy if you understand what each coordinate means.)

But if you understand the right-hand rule, it shouldn't be too hard to remember/derive \begin{align*} \mathbf{i} \times \mathbf{j} &= \mathbf{k} & \mathbf{j} \times \mathbf{i} &= - \mathbf{k} \\ \mathbf{j} \times \mathbf{k} &= \mathbf{i} & \mathbf{k} \times \mathbf{j} &= - \mathbf{i} \\ \mathbf{k} \times \mathbf{i} &= \mathbf{j} & \mathbf{i} \times \mathbf{k} &= - \mathbf{j} . \end{align*}

With these, we can easy compute a cross product simply by "expanding everything" and simplify according to these identities: \begin{align*} (u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}) \times (v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}) &= u_1 v_1 \mathbf{i} \times \mathbf{i} + u_1 v_2 \mathbf{i} \times \mathbf{j} + u_1 v_3 \mathbf{i} \times \mathbf{k} \\ &+ u_2 v_1 \mathbf{j} \times \mathbf{i} + u_2 v_2 \mathbf{j} \times \mathbf{j} + u_2 v_3 \mathbf{j} \times \mathbf{k} \\ &+ u_3 v_1 \mathbf{k} \times \mathbf{i} + u_3 v_2 \mathbf{k} \times \mathbf{j} + u_3 v_3 \mathbf{k} \times \mathbf{k} \end{align*}

Here, we are using the distributive property of the cross product as well as what already know about the cross products of standard unit vectors.

Let's compute the cross product $ (1 \mathbf{i} + 2 \mathbf{j} + 3\mathbf{k}) \times (4 \mathbf{i} + 5 \mathbf{j} + 6\mathbf{k}). $

Solution. Using the distributive property of cross product, we can expand the above expression into \begin{align*} &\;\;\; 1 \cdot 4 (\color{red}{ \mathbf{i} \times \mathbf{i} }) + 1 \cdot 5 (\color{blue}{ \mathbf{i} \times \mathbf{j} }) + 1 \cdot 6 (\color{olive}{ \mathbf{i} \times \mathbf{k} }) \\ &+ 2 \cdot 4 (\color{blue}{ \mathbf{j} \times \mathbf{i} }) + 2 \cdot 5 (\color{red}{ \mathbf{j} \times \mathbf{j} }) + 2 \cdot 6 (\color{purple}{ \mathbf{j} \times \mathbf{k} }) \\ &+ 3 \cdot 4 (\color{olive}{ \mathbf{k} \times \mathbf{i} }) + 3 \cdot 5 (\color{purple}{ \mathbf{k} \times \mathbf{j} }) + 3 \cdot 6 (\color{red}{ \mathbf{k} \times \mathbf{k} }) \end{align*}

From what we know about the cross products of standard unit vectors, this simplifies into \[ 4 (\color{red}{ \mathbf{0} }) + 5 (\color{blue}{ \mathbf{k} }) + 6 (\color{olive}{ -\mathbf{j} }) + 8 (\color{blue}{ -\mathbf{k} }) + 10 (\color{red}{ \mathbf{0} }) + 12 (\color{purple}{ \mathbf{i} }) + 12 (\color{olive}{ \mathbf{j} }) + 15 (\color{purple}{-\mathbf{i} }) + 18 (\color{red}{ \mathbf{0} }) \]

After removing the zero terms and combining like terms, we get \[ (12-15) \color{purple}{ \mathbf{i} } + (-6+12) \color{olive}{ \mathbf{j} } + (5-8) \color{blue}{ \mathbf{k} } \]

I.e., \[ -3 \color{purple}{ \mathbf{i} } +6 \color{olive}{ \mathbf{j} } -3 \color{blue}{ \mathbf{k} } \]

The determinant method

For those who are familiar with $3 \times 3$ determinants, the cross product can be expressed as the more compact expression \[ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{vmatrix} 1 & u_1 & v_1 \\ 0 & u_2 & v_2 \\ 0 & u_3 & v_3 \end{vmatrix} \mathbf{i} + \begin{vmatrix} 0 & u_1 & v_1 \\ 1 & u_2 & v_2 \\ 0 & u_3 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & u_1 & v_1 \\ 0 & u_2 & v_2 \\ 1 & u_3 & v_3 \end{vmatrix} \mathbf{k} \]

Some people like to express this in an even more compact (but ultimately incorrect) expression \[ \begin{vmatrix} \mathbf{i} & u_1 & v_1 \\ \mathbf{j} & u_2 & v_2 \\ \mathbf{k} & u_3 & v_3 \end{vmatrix} \] Of course, this expression is just a mnemonic device, and it is not to be taken literally (it doesn't even make sense, since we are mixing scalar and vectors).

The geometric interpretation

Recall that our original motivation behind cross product is from the geometry side. So naturally our apparently algebraic definition has a nice geometric interpretation.

Let $\mathbf{u}$ and $\mathbf{v}$ be two nonzero vectors. If $\mathbf{u} \times \mathbf{v} \ne \mathbf{0}$ then it is orthogonal to both $\mathbf{u}$ and $\mathbf{v}$, and its direction follows the right hand rule.

Of course, this interpretation breaks down if $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, since it no longer has a well-defined direction.

Let $\mathbf{u}$ and $\mathbf{v}$ be two nonzero vectors, and let $\theta$ be the angle between them. Then \[ \| \mathbf{u} \times \mathbf{v} \| = \| \mathbf{u} \| \, \| \mathbf{v} \| \, |\sin(\theta)| \]

This equation should be compared with a similar (but almost opposite) identity for the dot product \[ \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta). \]

Cross product as a directed area

The geometric interpretation goes even deeper. Indeed, the equation \[ \| \mathbf{u} \times \mathbf{v} \| = \| \mathbf{u} \| \, \| \mathbf{v} \| \, |\sin(\theta)| \]

tell us that the magnitude of $\| \mathbf{u} \times \mathbf{v} \|$ equals the area of the parallelogram spanned by $\mathbf{u}$ and $\mathbf{v}$. In this sense, we can take a cross product to be a "directed area" (area with directions).