Polynomial systems in Economics

...and the polyhedral homotopy


Tianran Chen

Department of Mathematics
Auburn University at Montgomery



Sep. 21, 2023
Invitation to algebraic statistics and applications
IMSI
Chicago, IL USA






\[ \text{Nash equilibrium} \quad + \quad \text{Polyhedral homotopy} \]




Start from the very very basic...

A "game" is a strategic interaction involving multiple "players", where each player's outcome depends on the choices of all players.






A\B 💎 📜 ✂️
💎 0 -1 +1
📜 +1 0 -1
✂️ -1 +1 0

Normal form game

A\B 💎 📜 ✂️
💎 0 -1 +1
📜 +1 0 -1
✂️ -1 +1 0
B\A 💎 📜 ✂️
💎 0 -1 +1
📜 +1 0 -1
✂️ -1 +1 0

Pure vs mixed strategies

Mixed strategy: assignment of probabilities for pure strategies.

Totally mixed strategy: assignment of positive probabilities.

A\B 💎 📜 ✂️
💎 0 -1 +1
📜 +1 0 -1
✂️ -1 +1 0

\[ \begin{aligned} &\text{A's expected payoff} \\ &= (\,0\,) \cdot a_1 b_1 + (-1) \cdot a_1 b_2 + (+1) \cdot a_1 b_3 \\ &+ (+1) \cdot a_2 b_1 + (\,0\,) \cdot a_2 b_2 + (-1) \cdot a_2 b_3 \\ &+ (-1) \cdot a_3 b_1 + (+1) \cdot a_3 b_2 + (\,0\,) \cdot a_3 b_3 \end{aligned} \]

\[ \begin{aligned} \text{A's payoff} &= (\;0\;) \cdot a_1 \class{highlight}{\frac{1}{3}} + (-1) \cdot a_1 \class{highlight}{\frac{1}{3}} + (+1) \cdot a_1 \class{highlight}{\frac{1}{3}} \\ &+ (+1) \cdot a_2 \class{highlight}{\frac{1}{3}} + (\;0\;) \cdot a_2 \class{highlight}{\frac{1}{3}} + (-1) \cdot a_2 \class{highlight}{\frac{1}{3}} \\ &+ (-1) \cdot a_3 \class{highlight}{\frac{1}{3}} + (+1) \cdot a_3 \class{highlight}{\frac{1}{3}} + (\;0\;) \cdot a_3 \class{highlight}{\frac{1}{3}} \class{highlight}{=0} \end{aligned} \]

No way A can improve it.

\[ \begin{aligned} \class{highlight}{0} &\ge (\;0\;) \cdot a_1 \class{highlight}{\frac{1}{3}} + (-1) \cdot a_1 \class{highlight}{\frac{1}{3}} + (+1) \cdot a_1 \class{highlight}{\frac{1}{3}} \\ &+ (+1) \cdot a_2 \class{highlight}{\frac{1}{3}} + (\;0\;) \cdot a_2 \class{highlight}{\frac{1}{3}} + (-1) \cdot a_2 \class{highlight}{\frac{1}{3}} \\ &+ (-1) \cdot a_3 \class{highlight}{\frac{1}{3}} + (+1) \cdot a_3 \class{highlight}{\frac{1}{3}} + (\;0\;) \cdot a_3 \class{highlight}{\frac{1}{3}} \end{aligned} \]

\[ \begin{aligned} \class{highlight}{0} &\ge (\;0\;) \cdot \class{highlight}{\frac{1}{3}} b_1 + (-1) \cdot \class{highlight}{\frac{1}{3}} b_1 + (+1) \cdot \class{highlight}{\frac{1}{3}} b_1 \\ &+ (+1) \cdot \class{highlight}{\frac{1}{3}} b_2 + (\;0\;) \cdot \class{highlight}{\frac{1}{3}} b_2 + (-1) \cdot \class{highlight}{\frac{1}{3}} b_2 \\ &+ (-1) \cdot \class{highlight}{\frac{1}{3}} b_3 + (+1) \cdot \class{highlight}{\frac{1}{3}} b_3 + (\;0\;) \cdot \class{highlight}{\frac{1}{3}} b_3 \end{aligned} \]

Nash equilibrium: strategies $(a_1,a_2,a_3)$ and $(b_1,b_2,b_3)$ where neither can increase payoff by changing their strategy unilaterally.
J. Nash. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48-49 (1950).

$A,B,C$ play a non-cooperative game. Each have 2 pure strategies.

Three mixed strategies \[ \begin{aligned} A &: (a_1,a_2) \\ B &: (b_1,b_2) \\ C &: (c_1,c_2) \end{aligned} \] with \[ \begin{aligned} a_1 + a_2 &= 1 \\ b_1 + b_2 &= 1 \\ c_1 + c_2 &= 1 \\ \end{aligned} \]

Player A's view

There are 8 situations:

  • A choose #1, B choose #1, C choose #1 ("111") Payoff: $A_{111}$
  • A choose #1, B choose #1, C choose #2 ("112") Payoff: $A_{112}$
  • A choose #1, B choose #2, C choose #1 ("121") Payoff: $A_{121}$
  • A choose #1, B choose #2, C choose #2 ("122") Payoff: $A_{122}$
  • A choose #2, B choose #1, C choose #1 ("211") Payoff: $A_{211}$
  • ......
  • ......
  • A choose #2, B choose #2, C choose #2 ("222") Payoff: $A_{222}$


\[ A_{ijk} \; := \; \text{The payoff for situation } (ijk) \]

Payoff arrays

\[ A_{ijk} \; := \; \text{The payoff for situation } (ijk) \text{ for A} \]

\[ B_{ijk} \; := \; \text{The payoff for situation } (ijk) \text{ for B} \]

\[ C_{ijk} \; := \; \text{The payoff for situation } (ijk) \text{ for C} \]

The game is encoded in $2 \times 2 \times 2$ arrays $A,B,C$.

Player A's payoff

\[ A_{ijk} \; := \; \text{The payoff for situation } (ijk) \text{ for A} \]

\[ \text{The probability for } (ijk) \;=\; a_i \, b_j \, c_k \]

Payoff: \[ \begin{aligned} A_{111} a_1 b_1 c_1 &+ A_{112} a_1 b_1 c_2 + A_{121} a_1 b_2 c_1 + A_{122} a_1 b_2 c_2 + \\ A_{211} a_2 b_1 c_1 &+ A_{212} a_2 b_1 c_2 + A_{221} a_2 b_2 c_1 + A_{222} a_2 b_2 c_2 \end{aligned} \]

\[ \sum_{i=1}^2 \sum_{j=1}^2 \sum_{k=1}^2 A_{ijk} \, a_i \, b_j \, c_k \] \[ =\; \sum_{i,j,k=1}^2 A_{ijk} \, a_i \, b_j \, c_k \]

\[ \begin{aligned} \text{Player A's payoff} &= \sum_{i,j,k=1}^2 A_{ijk} \, a_i \, b_j \, c_k \\ \text{Player B's payoff} &= \sum_{i,j,k=1}^2 B_{ijk} \, a_i \, b_j \, c_k \\ \text{Player C's payoff} &= \sum_{i,j,k=1}^2 C_{ijk} \, a_i \, b_j \, c_k \end{aligned} \]

A vector $(a_1,a_2,b_1,b_2,c_1,c_2)$ is called a Nash equilibrium if no player can increase their own payoff unilaterally.

There are two aspects: The algebraic and the combinatorial.

A Nash equilibrium is totally mixed (fully mixed) if it contains only positive entries. (Every pure strategy is used)
A vector $(a_1,a_2,b_1,b_2,c_1,c_2)$ is called a Nash equilibrium if no player can increase his/her own payoff while the other two players keep their strategies fixed.
\[ \begin{gathered} \text{A's payoff with} \\ \text{strategy } (a_1,a_2) \end{gathered} \] \[ \ge \; \begin{gathered} \text{A's payoff with} \\ \text{any strategy } (\, \class{highlight}{\overline{a}_1}, \class{highlight}{\overline{a}_2} ) \end{gathered} \;\; \left( \begin{gathered} \text{with fixed} \\ (b_1,b_2), (c_1,c_2) \end{gathered} \right) \]

\[ \sum_{i,j,k=1}^2 A_{ijk} \, a_i \, b_j \, c_k \ge \sum_{i,j,k=1}^2 A_{ijk} \, \class{highlight}{\overline{a}_i} \, b_j \, c_k \quad\text{for any } (\class{highlight}{\overline{a}_1},\class{highlight}{\overline{a}_2}) \in \Delta \]

In particular, this is true for $(1,0)$ and $(0,1)$.

\[ \begin{aligned} \alpha &= \sum_{i,j,k=1}^2 A_{ijk} \, a_i \, b_j \, c_k & \alpha &\ge \sum_{j,k=1}^2 A_{\class{highlight}{1}jk} \, b_j \, c_k \\ && \alpha &\ge \sum_{j,k=1}^2 A_{\class{highlight}{2}jk} \, b_j \, c_k \end{aligned} \]

After some algebraic manipuations, we get 9 equations in the 9 variables $a_1,a_2,b_1,b_2,c_1,c_2$ (mixed strategies) and $\alpha,\beta,\gamma$ (payoffs). \[ \begin{aligned} \alpha &= A_{111} \, b_1 c_1 + A_{112} \, b_1 c_2 + A_{121} \, b_2 c_1 + A_{122} \, b_2 c_2 \\ \alpha &= A_{211} \, b_1 c_1 + A_{212} \, b_1 c_2 + A_{221} \, b_2 c_1 + A_{222} \, b_2 c_2 \end{aligned} \]
\[ \begin{aligned} \beta &=B_{111} a_1 c_1 + B_{112} a_1 c_2 + B_{211} a_2 c_1 + B_{112} a_2 c_2 \\ \beta &=B_{121} a_1 c_1 + B_{122} a_1 c_2 + B_{221} a_2 c_1 + B_{222} a_2 c_2 \\ \gamma &=C_{111} a_1 b_1 + C_{121} a_1 b_2 + C_{211} a_2 b_1 + C_{221} a_2 b_2 \\ \gamma &=C_{112} a_1 b_1 + C_{122} a_1 b_2 + C_{212} a_2 b_1 + C_{222} a_2 b_2 \\ 1 &= a_1 + a_2 = b_1 + b_2 = c_1 + c_2 \end{aligned} \]

\[ \downarrow \]

\[ 0 = (A_{111} - A_{211}) b_1 c_1 + (A_{112} - A_{212}) b_1 c_2 + \cdots \]

\[ \downarrow \]

\[ 0 = \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \]

Real solutions with $a_1,a_2,b_1,b_2,c_1,c_2 > 0$ correspond to totally mixed Nash equilibria.

\[ \overline{A}_{jk} = \text{Difference in payoff between two choices} \]

\[ 0 = \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \]
\[ \begin{aligned} 0 &= \overline{B}_{11} a_1 c_1 + \overline{B}_{12} a_1 c_2 + \overline{B}_{21} a_2 c_1 + \overline{B}_{22} a_2 c_2 \\ 0 &= \overline{C}_{11} a_1 b_1 + \overline{C}_{12} a_1 b_2 + \overline{C}_{21} a_2 b_1 + \overline{C}_{22} a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]

6 equations in 6 unknowns (payoff variables eliminated).

Real solutions with $a_1,a_2,b_1,b_2,c_1,c_2 > 0$ correspond to
totally mixed Nash equilibria.


Question: How to compute totally mixed Nash equilibria (in general) ?



Approach:

  • Compute all nonzero complex solutions ($\mathbb{C}^*$-solutions)
  • Numerical homotopy method (continuous deformation)
  • Polyhedral homotopy of Huber & Sturmfels

Totally mixed Nash equilibria are defined by the equations \[ 0 = \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \] \[ \begin{aligned} 0 &= \overline{B}_{11} a_1 c_1 + \overline{B}_{12} a_1 c_2 + \overline{B}_{21} a_2 c_1 + \overline{B}_{22} a_2 c_2 \\ 0 &= \overline{C}_{11} a_1 b_1 + \overline{C}_{12} a_1 b_2 + \overline{C}_{21} a_2 b_1 + \overline{C}_{22} a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]

How to solve?

How many solutions?

Only finite many solutions, all isolated. This holds for generic coefficients. (a Zariski-dense subset of coefficients)

Harsanyi. Oddness of the number of equilibrium points: A new proof. Int. J. Game Theory 2, 235-250 (1973).

\[ \class{highlight}{\text{Generic}} \;\approx\; \text{Randomly perturbed} \]

We consider the generic version

\[ \begin{aligned} 0 &= \class{highlight}{\overline{A}_{11}} \, b_1 c_1 + \class{highlight}{\overline{A}_{12}} \, b_1 c_2 + \class{highlight}{\overline{A}_{21}} \, b_2 c_1 + \class{highlight}{\overline{A}_{22}} \, b_2 c_2 \\ 0 &= \class{highlight}{\overline{B}_{11}} a_1 c_1 + \class{highlight}{\overline{B}_{12}} a_1 c_2 + \class{highlight}{\overline{B}_{21}} a_2 c_1 + \class{highlight}{\overline{B}_{22}} a_2 c_2 \\ 0 &= \class{highlight}{\overline{C}_{11}} a_1 b_1 + \class{highlight}{\overline{C}_{12}} a_1 b_2 + \class{highlight}{\overline{C}_{21}} a_2 b_1 + \class{highlight}{\overline{C}_{22}} a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]

where highlight coefficients are randomly perturbed.

\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]


What will happen to the solutions as \[ \begin{aligned} \overline{A}_{jk}, \overline{B}_{ik}, \overline{C}_{ij} \; &\to \; 0 \\ a_1 + a_2,\; b_1 + b_2,\; c_1 + c_2 \; &\to \; \infty \end{aligned} \]

What does this procedure mean? How are we changing the game? Is there a reasonable interpretation?

\[ \begin{aligned} 0 &= \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ 0 &= \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ 0 &= \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ 1 &= \class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 \\ 1 &= \class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 \quad\quad\text{With generic exponents (``liftings'')}\\ 1 &= \class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 \end{aligned} \]

What happens when $t \to 0$ ?

\[ H(a_1,a_2,b_1,b_2,c_1,c_2,\class{highlight}{t}) = \] \[ \left\{ \begin{aligned} & \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ & \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ & \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ &\class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 - 1 \\ &\class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 - 1 \\ &\class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 - 1 \end{aligned} \right. \]

We considered the homotopy function $H: (\mathbb{C}^*)^6 \times [0,1] \to \mathbb{C}^6$, and the "paths" defined by $H = 0$. This is the polyhedral homotopy.

\[ H(a_1,a_2,b_1,b_2,c_1,c_2,\class{highlight}{t}) = \] \[ \left\{ \begin{aligned} & \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ & \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ & \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ &\class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 - 1 \\ &\class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 - 1 \\ &\class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 - 1 \end{aligned} \right. \]
  1. IF we can locate the starting points near $t=0$......
  2. IF we can track these paths......
  3. IF we can reach their limit points at $t=1$......

......then we can find all (totally mixed) Nash equilibria.

(We will focus on the 1st "IF")

Complication: Near $t=0$, the paths escapes $(\mathbb{C}^*)^6$.

Can we "describe" the local behavior of the paths as $t \to 0$ ?

Near $t=0$, each path is parametrized by some \[ \begin{aligned} \boldsymbol{a}_1(t) &= t^{\frac{\alpha_1}{m}} (a_1 + o(t)) & \boldsymbol{a}_2(t) &= t^{\frac{\alpha_2}{m}} (a_2 + o(t)) \\ \boldsymbol{b}_1(t) &= t^{\frac{\beta_1 }{m}} (b_1 + o(t)) & \boldsymbol{b}_2(t) &= t^{\frac{\beta_2 }{m}} (b_2 + o(t)) \\ \boldsymbol{c}_1(t) &= t^{\frac{\gamma_1}{m}} (c_1 + o(t)) & \boldsymbol{c}_2(t) &= t^{\frac{\gamma_2}{m}} (c_2 + o(t)) \end{aligned} \]
  • $\alpha_1,\alpha_2,\beta_1,\beta_2,\gamma_1,\gamma_2,m \in \mathbb{Z}$ are constants (path dependent),
  • $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{C}^*$.

Key questions:

  • How to find exponents $\alpha_1,\alpha_2,\beta_1,\beta_2,\gamma_1,\gamma_2$ and $m$ ?
  • How to find leading coefficient $a_1,\, a_2,\, b_1,\, b_2, \, c_1,\, c_2$ ?

With these, numerical "path trackers" can take over.

Near $t=0$, each path is parametrized by some \[ \begin{aligned} \boldsymbol{a}_1(t) &= t^{\frac{\alpha_1}{m}} (a_1 + o(t)) & \boldsymbol{a}_2(t) &= t^{\frac{\alpha_2}{m}} (a_2 + o(t)) \\ \boldsymbol{b}_1(t) &= t^{\frac{\beta_1 }{m}} (b_1 + o(t)) & \boldsymbol{b}_2(t) &= t^{\frac{\beta_2 }{m}} (b_2 + o(t)) \\ \boldsymbol{c}_1(t) &= t^{\frac{\gamma_1}{m}} (c_1 + o(t)) & \boldsymbol{c}_2(t) &= t^{\frac{\gamma_2}{m}} (c_2 + o(t)) \end{aligned} \]

That means \[ H( \boldsymbol{a}_1(t), \boldsymbol{a}_2(t), \boldsymbol{b}_1(t), \boldsymbol{b}_2(t), \boldsymbol{c}_1(t), \boldsymbol{c}_2(t), t ) = 0 \]

Define \[ \mathbf{v} = \begin{bmatrix} \frac{\alpha_1}{m}, \frac{\alpha_2}{m}, \frac{\beta_1}{m}, \frac{\beta_2}{m}, \frac{\gamma_1}{m}, \frac{\gamma_2}{m}, 1 \end{bmatrix} \in \mathbb{Q}^6 \times \mathbb{Q} \]

Then \[ \operatorname{init}_{\mathbf{v}} H ( a_1, a_2, b_1, b_2, c_1, c_2, 1 ) = \mathbf{0} \] i.e., the leading coefficients form a $\mathbb{C}^*$-zero of the initial system.

Initial systems

\[ f(\mathbf{x}) = \sum_{\mathbf{a} \in S} \, c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \quad\longrightarrow\quad \operatorname{init}_{\mathbf{v}} f = \sum_{\mathbf{a} \in (S)_{\mathbf{v}}} \, c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \] where $(S)_\mathbf{v}$ is the subset of $S$ on which $\langle \cdot, \mathbf{v} \rangle$ is minimized.

\[ f = c_{00} \color{purple}{x^0 y^0} + c_{10} \color{green}{x^2 y^0} + c_{22} \color{blue}{x^2 y^2} + c_{12} \color{red}{x^1 y^2} \]

\[ \operatorname{init}_{\mathbf{v}} f(x,y) = c_{00} \color{purple}{x^0 y^0} \]

\[ \operatorname{init}_{\mathbf{v}} f(x,y) = c_{00} \color{purple}{x^0 y^0} + c_{12} \color{red}{x^1 y^2} \]

\[ \operatorname{init}_{\mathbf{v}} \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} \operatorname{init}_{\mathbf{v}} f_1 \\ \vdots \\ \operatorname{init}_{\mathbf{v}} f_n \end{bmatrix} \]

Recall that from the assumption we derived \[ \operatorname{init}_{\mathbf{v}} H ( a_1, a_2, b_1, b_2, c_1, c_2, 1 ) = \mathbf{0} \]

This requires very special $\mathbf{v}$.

For a "bad" choice of $\mathbf{v}$, $\operatorname{init}_{\mathbf{v}} H = \mathbf{0} \; \to$ \[ \begin{aligned} \class{lowlowlight}{ 0 } &= \class{highlight}{\overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{ \overline{A}_{12} \, b_1 c_2 } + \class{lowlowlight}{ \overline{A}_{21} \, b_2 c_1 } + \class{lowlowlight}{ \overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{B}_{11} \,a_1 c_1 } + \class{lowlowlight}{ \overline{B}_{12} \,a_1 c_2 } + \class{lowlowlight}{\overline{B}_{21} \,a_2 c_1 } + \class{lowlowlight}{\overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{C}_{11} \,a_1 b_1 } + \class{lowlowlight}{\overline{C}_{12} \,a_1 b_2 } + \class{lowlowlight}{\overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{ \overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{1} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} \\ \class{lowlowlight}{1} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } \\ \class{lowlowlight}{1} &= \class{highlight}{c_1} + \class{lowlowlight}{ c_2} \end{aligned} \]

$\operatorname{init}_{\mathbf{v}} H = \mathbf{0} \; \to$ has no solution in $(\mathbb{C}^*)^6$.

For one "good" choice of $\mathbf{v}$, $\operatorname{init}_{\mathbf{v}} H = \mathbf{0} \; \to$ \[ \begin{aligned} \class{lowlowlight}{0} &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{lowlowlight}{\overline{A}_{21} \, b_2 c_1 } + \class{highlight}{ \overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{0} &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{highlight}{ \overline{B}_{12} \,a_1 c_2 } + \class{lowlowlight}{\overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ \overline{C}_{11} \,a_1 b_1 } + \class{highlight}{ \overline{C}_{12} \,a_1 b_2 } + \class{lowlowlight}{\overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{\overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ c_1} + \class{lowlowlight}{c_2} - \class{highlight}{1} \end{aligned} \]

  • A system of binomials
  • Has a solution in $(\mathbb{C}^*)^6$

\[ \text{``Good''} \;\Longrightarrow\; \mathbf{v} \in \bigcap_{i=1}^6 \mathbb{V}(\operatorname{Trop}(h_i)) \]

Another "good" choice of $\mathbf{v}$, $\operatorname{init}_{\mathbf{v}} H = \mathbf{0} \; \to$

\[ \begin{aligned} \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{highlight}{ \overline{A}_{21} \, b_2 c_1 } + \class{lowlowlight}{\overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{lowlowlight}{\overline{B}_{12} \,a_1 c_2 } + \class{highlight}{ \overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{C}_{11} \,a_1 b_1 } + \class{highlight}{\overline{C}_{12} \,a_1 b_2 } + \class{highlight}{ \overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{ \overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{ 0 } &= \class{highlight}{c_1} + \class{lowlowlight}{ c_2} - \class{highlight}{1} \end{aligned} \]
  • Also a system of binomials
  • Also has one solution in $(\mathbb{C}^*)^6$

Exactly 2 "good" choices. They produce binomial systems

\[ \begin{aligned} \class{lowlowlight}{0} &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{lowlowlight}{\overline{A}_{21} \, b_2 c_1 } + \class{highlight}{ \overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{0} &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{highlight}{ \overline{B}_{12} \,a_1 c_2 } + \class{lowlowlight}{\overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ \overline{C}_{11} \,a_1 b_1 } + \class{highlight}{ \overline{C}_{12} \,a_1 b_2 } + \class{lowlowlight}{\overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{\overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ c_1} + \class{lowlowlight}{c_2} - \class{highlight}{1} \end{aligned} \]

and

\[ \begin{aligned} \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{highlight}{ \overline{A}_{21} \, b_2 c_1 } + \class{lowlowlight}{\overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{lowlowlight}{\overline{B}_{12} \,a_1 c_2 } + \class{highlight}{ \overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{C}_{11} \,a_1 b_1 } + \class{highlight}{\overline{C}_{12} \,a_1 b_2 } + \class{highlight}{ \overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{ \overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{ 0 } &= \class{highlight}{c_1} + \class{lowlowlight}{ c_2} - \class{highlight}{1} \end{aligned} \]

Their $\mathbb{C}^*$-solutions give us leading coefficients. Starting points of the "solution paths" can be computed.

Starting points of the "solution paths" can be computed.

"Tracking" these paths lead to two (totally mixed) Nash equilibria. Problem solved!

Revisiting our assumption

Near $t=0$, each path is parametrized by some \[ \begin{aligned} \boldsymbol{a}_1(t) &= t^{\frac{\alpha_1}{m}} (a_1 + o(t)) & \boldsymbol{a}_2(t) &= t^{\frac{\alpha_2}{m}} (a_2 + o(t)) \\ \boldsymbol{b}_1(t) &= t^{\frac{\beta_1 }{m}} (b_1 + o(t)) & \boldsymbol{b}_2(t) &= t^{\frac{\beta_2 }{m}} (b_2 + o(t)) \\ \boldsymbol{c}_1(t) &= t^{\frac{\gamma_1}{m}} (c_1 + o(t)) & \boldsymbol{c}_2(t) &= t^{\frac{\gamma_2}{m}} (c_2 + o(t)) \end{aligned} \]
  • $\alpha_1,\alpha_2,\beta_1,\beta_2,\gamma_1,\gamma_2,m \in \mathbb{Z}$ are constants (path dependent),
  • $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{C}^*$.

Why is this true?

  • Newton-Puiseux Theorem
  • Local Uniformizer
  • Local Parametrization Theorem
Near $t=0$, each path defined by \[ H( \boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{c}_1, \boldsymbol{c}_2, t ) = \mathbf{0} \] has (convergent) Laurent power series expansions \[ \begin{aligned} \boldsymbol{a}_1(s) &= a_{10} s^{\alpha_1} + a_{11} s^{\alpha_1 + 1} + \cdots \\ &\vdots \\ \boldsymbol{c}_2(s) &= c_{20} s^{\gamma_2} + c_{21} s^{\gamma_2 + 1} + \cdots \\ t(s) &= s^{m} \end{aligned} \] for some $m \in \mathbb{Z}^+$.

We have Puiseux series (fractional power series) expansion \[ \begin{aligned} \boldsymbol{a}_1(t) &= a_{10} t^{\frac{\alpha_1}{m}} + a_{11} t^{\frac{\alpha_1 + 1}{m}} + \cdots \in \mathbb{C}\{t\} \\ &\vdots \\ \boldsymbol{c}_2(t) &= c_{20} t^{\frac{\gamma_2}{m}} + c_{21} t^{\frac{\gamma_2 + 1}{m}} + \cdots \in \mathbb{C}\{t\} \end{aligned} \]

We have Puiseux series (fractional power series) expansion \[ \begin{aligned} \boldsymbol{a}_1(t) &= a_{10} t^{\frac{\alpha_1}{m}} + a_{11} t^{\frac{\alpha_1 + 1}{m}} + \cdots \in \mathbb{C}\{t\} \\ &\vdots \\ \boldsymbol{c}_2(t) &= c_{20} t^{\frac{\gamma_2}{m}} + c_{21} t^{\frac{\gamma_2 + 1}{m}} + \cdots \in \mathbb{C}\{t\} \end{aligned} \]

(Justified) Near $t=0$, each path is parametrized by \[ \begin{aligned} \boldsymbol{a}_1(t) &= t^{\frac{\alpha_1}{m}} (a_1 + o(t)) & \boldsymbol{a}_2(t) &= t^{\frac{\alpha_2}{m}} (a_2 + o(t)) \\ \boldsymbol{b}_1(t) &= t^{\frac{\beta_1 }{m}} (b_1 + o(t)) & \boldsymbol{b}_2(t) &= t^{\frac{\beta_2 }{m}} (b_2 + o(t)) \\ \boldsymbol{c}_1(t) &= t^{\frac{\gamma_1}{m}} (c_1 + o(t)) & \boldsymbol{c}_2(t) &= t^{\frac{\gamma_2}{m}} (c_2 + o(t)) \end{aligned} \]

Polyhedral homotopy for totally mixed Nash equilibria

Huber & Sturmfels. A polyhedral method for solving sparse polynomial systems. Math Comput 64, 1541-1555 (1995).

\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]
\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]
\[ H = \left\{ \begin{aligned} & \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ & \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ & \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ &\class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 - 1 \\ &\class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 - 1 \\ &\class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 - 1 \end{aligned} \right. \]
\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]
\[ H = \left\{ \begin{aligned} & \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ & \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ & \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ &\class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 - 1 \\ &\class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 - 1 \\ &\class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 - 1 \end{aligned} \right. \]
\[ \left\{ \begin{aligned} \class{lowlowlight}{0} &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{lowlowlight}{\overline{A}_{21} \, b_2 c_1 } + \class{highlight}{ \overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{0} &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{highlight}{ \overline{B}_{12} \,a_1 c_2 } + \class{lowlowlight}{\overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ \overline{C}_{11} \,a_1 b_1 } + \class{highlight}{ \overline{C}_{12} \,a_1 b_2 } + \class{lowlowlight}{\overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{\overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ c_1} + \class{lowlowlight}{c_2} - \class{highlight}{1} \end{aligned} \right. \] \[ \left\{ \begin{aligned} \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{highlight}{ \overline{A}_{21} \, b_2 c_1 } + \class{lowlowlight}{\overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{lowlowlight}{\overline{B}_{12} \,a_1 c_2 } + \class{highlight}{ \overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{C}_{11} \,a_1 b_1 } + \class{highlight}{\overline{C}_{12} \,a_1 b_2 } + \class{highlight}{ \overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{ \overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{ 0 } &= \class{highlight}{c_1} + \class{lowlowlight}{ c_2} - \class{highlight}{1} \end{aligned} \right. \]
\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]
\[ H = \left\{ \begin{aligned} & \overline{A}_{11} \class{highlight}{t^{1.0}} b_1 c_1 + \overline{A}_{12} \class{highlight}{t^{1.4}} b_1 c_2 + \overline{A}_{21} \class{highlight}{t^{1.2}} b_2 c_1 + \overline{A}_{22} \class{highlight}{t^{0.7}} b_2 c_2 \\ & \overline{B}_{11} \class{highlight}{t^{1.2}} a_1 c_1 + \overline{B}_{12} \class{highlight}{t^{0.8}} a_1 c_2 + \overline{B}_{21} \class{highlight}{t^{1.9}} a_2 c_1 + \overline{B}_{22} \class{highlight}{t^{1.1}} a_2 c_2 \\ & \overline{C}_{11} \class{highlight}{t^{0.5}} a_1 b_1 + \overline{C}_{12} \class{highlight}{t^{0.3}} a_1 b_2 + \overline{C}_{21} \class{highlight}{t^{1.3}} a_2 b_1 + \overline{C}_{22} \class{highlight}{t^{1.6}} a_2 b_2 \\ &\class{highlight}{t^{1.0}} \,a_1 + \class{highlight}{t^{4.5}} \,a_2 - 1 \\ &\class{highlight}{t^{1.0}} \,b_1 + \class{highlight}{t^{5.2}} \,b_2 - 1 \\ &\class{highlight}{t^{1.0}} \,c_1 + \class{highlight}{t^{7.1}} \,c_2 - 1 \end{aligned} \right. \]
\[ \left\{ \begin{aligned} \class{lowlowlight}{0} &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{lowlowlight}{\overline{A}_{21} \, b_2 c_1 } + \class{highlight}{ \overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{0} &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{highlight}{ \overline{B}_{12} \,a_1 c_2 } + \class{lowlowlight}{\overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ \overline{C}_{11} \,a_1 b_1 } + \class{highlight}{ \overline{C}_{12} \,a_1 b_2 } + \class{lowlowlight}{\overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{\overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ c_1} + \class{lowlowlight}{c_2} - \class{highlight}{1} \end{aligned} \right. \] \[ \left\{ \begin{aligned} \class{lowlowlight}{ 0 } &= \class{highlight}{ \overline{A}_{11} \, b_1 c_1 } + \class{lowlowlight}{\overline{A}_{12} \, b_1 c_2 } + \class{highlight}{ \overline{A}_{21} \, b_2 c_1 } + \class{lowlowlight}{\overline{A}_{22} \, b_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{B}_{11} \,a_1 c_1 } + \class{lowlowlight}{\overline{B}_{12} \,a_1 c_2 } + \class{highlight}{ \overline{B}_{21} \,a_2 c_1 } + \class{highlight}{ \overline{B}_{22} \,a_2 c_2 } \\ \class{lowlowlight}{ 0 } &= \class{lowlowlight}{\overline{C}_{11} \,a_1 b_1 } + \class{highlight}{\overline{C}_{12} \,a_1 b_2 } + \class{highlight}{ \overline{C}_{21} \,a_2 b_1 } + \class{lowlowlight}{ \overline{C}_{22} \,a_2 b_2 } \\ \class{lowlowlight}{0} &= \class{highlight}{ a_1 } + \class{lowlowlight}{a_2} - \class{highlight}{1} \\ \class{lowlowlight}{0} &= \class{highlight}{ b_1 } + \class{lowlowlight}{b_2 } - \class{highlight}{1} \\ \class{lowlowlight}{ 0 } &= \class{highlight}{c_1} + \class{lowlowlight}{ c_2} - \class{highlight}{1} \end{aligned} \right. \]

Standard numerical "path trackers" can track these paths and produce totally mixed Nash equilibria.

Polyhedral homotopy method

Huber & Sturmfels. A polyhedral method for solving sparse polynomial systems. Math Comput 64, 1541-1555 (1995).

For a system of $n$ (Laurent) polynomials $F$

\[ f_i (\mathbf{x}) = \sum_{\mathbf{a} \in S_i} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \quad\text{for } i = 1,\ldots,n \]

in $n$ variables $\mathbf{x} = (x_1,\ldots,x_n)$, where

  • $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ denotes a monomial
  • $S_i$ is the support of $f_i$
  • $c_{\mathbf{a}}$'s are nonzero complex coefficients...

the polyhedral homotopy method of Huber and Sturmfels is an efficient and stable numerical method for compute all $\mathbb{C}^*$-zeros.

Extensions to $\mathbb{C}^n$:

  • Rojas. A convex geometric approach to counting the roots of a polynomial system. Theor. Comput. Sci. 133, 105-140 (1994).
  • Li & Wang. The BKK root count in $\mathbb{C}^n$. Math. Comput. 65, 1477-1484 (1996).
  • Huber & Sturmfels. Bernstein's theorem in affine space. Discrete Comput Geom 17, 137-141 (1997).
\[ f_i (\mathbf{x}) = \sum_{\mathbf{a} \in S_i} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \quad\text{for } i = 1,\ldots,n \]

For generic coefficients, all $\mathbb{C}^*$-solutions to $F = \mathbf{0}$ are isolated, and the total number is the BKK bound $\operatorname{MVol}(\operatorname{Newt}(f_1),\ldots,\operatorname{Newt}(f_n))$.

We construct the homotopy function $H = (h_1,\ldots,h_n)$

\[ h_i (\mathbf{x},\class{highlight}{t}) = \sum_{\mathbf{a} \in S_i} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} \class{highlight}{t^{\omega_i(\mathbf{a})}} \quad\text{for } i = 1,\ldots,n \]

where each $\omega_i : S_i \to \mathbb{Q}$ is a "lifting" function with generic images.

  • $H$ is continuous
  • $H(\mathbf{x},1) \equiv F(\mathbf{x})$
  • As $t$ varies between 1 and 0, $H$ "deforms" the target system $F$

For generic coefficients, $\mathbb{C}^*$-solutions to $H = \mathbf{0}$ also move continuously forming "solution paths".

How to start ?

Near $t=0$, the paths may escape $(\mathbb{C}^*)^n$, but they have Puiseux series expansions \[ x_i = t^{\class{highlight}{\frac{\alpha_i}{m}}}(y_i + o(t)) \quad\text{for } i = 1,\ldots,n \]

The "exponent" vector \[ \begin{bmatrix} \class{highlight}{\frac{\alpha_1}{m}} & \cdots & \class{highlight}{\frac{\alpha_n}{m}} & 1 \end{bmatrix} \]

is a common inner normal vector of $n$ edges of the Newton polytopes of \[ h_i (\mathbf{x},t) = \sum_{\mathbf{a} \in S_i} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}} t^{\omega_i(\mathbf{a})} \quad\text{for } i = 1,\ldots,n \]

And the leading coefficients $y_1,\ldots,y_n$ satisfies \[ \operatorname{init}_{\mathbf{v}} (y_1,\ldots,y_n,1) = \mathbf{0}. \]

These initial systems are generically binomial systems and can be solved directly and efficiently. Path trackers can then take over......

Root counting

\[ \begin{aligned} 0 &= \overline{A}_{11} \, b_1 c_1 + \overline{A}_{12} \, b_1 c_2 + \overline{A}_{21} \, b_2 c_1 + \overline{A}_{22} \, b_2 c_2 \\ 0 &= \overline{B}_{11} \,a_1 c_1 + \overline{B}_{12} \,a_1 c_2 + \overline{B}_{21} \,a_2 c_1 + \overline{B}_{22} \,a_2 c_2 \\ 0 &= \overline{C}_{11} \,a_1 b_1 + \overline{C}_{12} \,a_1 b_2 + \overline{C}_{21} \,a_2 b_1 + \overline{C}_{22} \,a_2 b_2 \\ 1 &= a_1 + a_2 \\ 1 &= b_1 + b_2 \\ 1 &= c_1 + c_2 \end{aligned} \]

What is the generic root count?



Why 2 ?

Bernshtein-Kushnirenko-Khovanskii (BKK) bound

(Bernshtein, Kushnirenko, Khovanskii) Given a system of (Laurent) polynomials $f_1,\dots,f_n$ in $(x_1,\dots,x_n)$ with generic coefficients, the number of isolated common roots in $(\mathbb{C}^*)^n$ is \[ \operatorname{MVol}( \operatorname{Newt}(f_1), \dots, \operatorname{Newt}(f_n) ). \]
  • $\operatorname{MVol}$ denotes the mixed volume function,
  • $\operatorname{Newt}(f_i)$ is the Newton polytope of $f_i$, i.e., the convex hull of the exponent vectors in $f_i$ as points in $\mathbb{R}^n$.

This "BKK" bound is also the maximum number of isolated $\mathbb{C}^*$-solutions such a system can have for any choice of coefficients.


(This is the number of paths the polyhedral homotopy has to trace.)

Mixed volume

\[ \text{Minkowski sum: } A + B := \{ a + b \mid a \in A, b \in B \} \]


+ =

(Minkowski) For convex polytopes $P_1,\dots,P_n$ in $\mathbb{R}^n$, the mixed volume $\operatorname{MVol}(P_1,\dots,P_n)$ is the coefficient of $\lambda_1 \cdots \lambda_n$ in \[ \operatorname{vol}(\lambda_1 P_1 + \cdots + \lambda_n P_n) \]

\[ \text{MVol}(A,B) = \text{Coef. of}\quad \lambda_1 \lambda_2 \quad \text{in}\quad \operatorname{vol}(\lambda_1 A + \lambda_2 B) \]

+ =

2-dimensional case

$\text{MVol}(A,B)$ is the coefficient of $\lambda_1 \lambda_2$ in $ \text{vol}(\lambda_1 A + \lambda_2 B) $

+ =

\[ \operatorname{MVol}(A,B) = \operatorname{vol}(A+B) - \text{vol}(A) - \text{vol}(B) \]


This formula can be generalized to higher dimensional (polarization formula), but this is not how we compute mixed volume in practice.

BKK bound for Nash equilibria

(McKelvey & McLennan) The maximum number of isolated totally mixed Nash equilibria for any $n$-player game where the $i$-th player has $d_i$ pure strategies equals the mixed volume of $\Delta[ d_1, \ldots, d_n ]$. ($n$ products of simplicies)

This mixed volume equals the number of partitions of \[ \{ p_k^{(i)} \mid i=1,\ldots,n,\; k=1,\ldots,d_i-1 \} \;=\; \bigcup_{i=1}^n B_1 \]

  • $|B_i| = d_i - 1$
  • $p_k^{(i)} \not\in B_i$ for any $k$.

McKelvey, & McLennan. The Maximal Number of Regular Totally Mixed Nash Equilibria. J. Econ. Theory 72, 411-425

This maximum number can be attained by counting only the real Nash equilibria with $p_k^{(i)} \in (0,1)$.

This mixed volume equals the number of partitions of \[ \{ p_k^{(i)} \mid i=1,\ldots,n,\; k=1,\ldots,d_i-1 \} \;=\; \bigcup_{i=1}^n B_1 \]

  • $|B_i| = d_i - 1$
  • $p_k^{(i)} \not\in B_i$ for any $k$.

The 3-player-2-strategies case

($n=3, d_i=2$) BKK bound equals the number of partitions \[ \{ a, b, c \} = B_1 \cup B_2 \cup B_3 \] such that $|B_1| = |B_2| = |B_3| = 1$

  • $a \not\in B_1$
  • $b \not\in B_2$
  • $c \not\in B_3$

(Coincide with the number of derangements in this special case)

The 3-player-2-strategies case

($n=3, d_i=2$) BKK bound equals the number of partitions \[ \{ a, b, c \} = B_1 \cup B_2 \cup B_3 \] such that $|B_1| = |B_2| = |B_3| = 1$

  • $a \not\in B_1$
  • $b \not\in B_2$
  • $c \not\in B_3$

(Coincide with the number of derangements in this special case)


There are only two possibilities: \[ \begin{aligned} B_1 &= \{ c \} && & B_1 &= \{ b \} \\ B_2 &= \{ a \} &&\text{and} & B_2 &= \{ c \} \\ B_3 &= \{ b \} && & B_3 &= \{ a \} \end{aligned} \]

There are exactly 2 totally mixed Nash equilibria.

3 players with 3 pure strategies

($n=3, d_i=3$) BKK bound equals the number of partitions \[ \{ a_1, a_2, b_1, b_2, c_1, c_2 \} = B_1 \cup B_2 \cup B_3 \] such that $|B_1| = |B_2| = |B_3| = 2$

  • $a_1,a_2 \not\in B_1$
  • $b_1,b_2 \not\in B_2$
  • $c_1,c_2 \not\in B_3$
How many such partitions are there? What are they?
Follow the exercise written by Irem Portakal: https://www.juliahomotopycontinuation.org/examples/nash/



Thank You!



https://www.tianranchen.org/talks/IMSI2023/

https://www.tianranchen.org/talks/IMSI2023/appendix.pdf



ti@nranchen.org