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Abstract Computing mixed volume of convex polytopes is an important
problem in computational algebraic geometry. This paper establishes suffi-
cient conditions under which the mixed volume of several convex polytopes
exactly equals the normalized volume of the convex hull of their union. Under
these conditions the problem of computing mixed volume of several polytopes
can be transformed into a volume computation problem for a single polytope
in the same dimension. We demonstrate through problems from real world ap-
plications that substantial reduction in computational costs can be achieved
via this transformation in situations where the convex hull of the union of
the polytopes has less complex geometry than the original polytopes. We also
discuss the important implications of this result in the polyhedral homotopy
method for solving polynomial systems.
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1 Introduction

The concept of mixed volume [67] arises naturally in the interplay between
Minkowski sum and volume in the study of convex polytopes. For convex
polytopes Q1, . . . , Qn ⊂ Rn, their mixed volume is the coefficient of λ1 · · ·λn
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in voln(λ1Q1 + · · · + λnQn), denoted MV(Q1, . . . , Qn). D. Bernshtein estab-
lished a crucial connection between mixed volume and algebraic geometry:
The number of isolated complex solutions with nonzero coordinate of a Lau-
rent polynomial system is bounded above by the mixed volume of the Newton
polytopes of the equations [8,9,47,52]. This result has sparked the develop-
ment of homotopy continuation methods [43,79]. In particular, B. Huber and
B. Sturmfels developed a new method for computing mixed volume via mixed
subdivision which produces an important by-product — the polyhedral homo-
topy method [43] for solving polynomial systems. Subsequently, mixed volume
computation has became an important research problem in computational al-
gebraic geometry [22,23,25,32,34,35,36,45,53,56,60,66,68,69,78].

Q1
Q2

Fig. 1 Two polygons and the
convex hull of their union

The computation of MV(Q1, . . . , Qn) can
be greatly simplified when some of the poly-
topes are identical, known as semi-mixed
cases [35,43]. The extreme case where all
polytopes are identical, i.e., Q1 = · · · = Qn,
is known as the unmixed case which is equiva-
lent to volume computation in the sense that
MV(Q, . . . , Q) = n! voln(Q). Algorithms for
calculating volume of polytopes can therefore
be used in such unmixed cases. The main goal
of the present contribution is to establish con-
ditions under which mixed volume computa-
tion can be turned into unmixed cases in the
same dimension. That is, we state conditions
under which MV(Q1, . . . , Qn) = n! voln(conv(Q1 ∪ · · · ∪ Qn)) where “conv”
denotes the operation of taking convex hull.

Example 1 In R2, consider, the two convex polytopes (polygons)

Q1 = conv{(1, 1), (3, 0), (4, 0), (4, 1), (3, 3), (1, 4), (0, 4), (0, 3)}
Q2 = conv{(0, 1), (0, 0), (3, 0), (4, 1), (4, 4), (3, 4)}

in Fig. 1. We can verify that MV(Q1, Q2) = 2 vol2(conv(Q1 ∪Q2)) = 32. The
monotonicity of mixed volume implies that MV(Q1, Q2) ≤ 2 voln(conv(Q1 ∪
Q2)), but the equality will not hold in general, since one side is invariant
under translations of Q1 and Q2 while the other is not. Understanding when
and why this equality would hold is our main goal. Here, turning MV(Q1, Q2)
into 2 vol(conv(Q1 ∪ Q2)) is computationally beneficial since conv(Q1 ∪ Q2),
having only 4 vertices, is significantly less complicated than both Q1 and Q2.

We shall establish certain sufficient conditions under which MV(Q1, . . . , Qn)
exactly equals n! voln(conv(Q1 ∪ · · · ∪Qn)). They can be summarized into the
following theorems which clearly apply to the above example. As we shall note
in Remark 10, these conditions can, in principle, be checked automatically as
by-products of the process of computing the volume of conv(Q1 ∪ · · · ∪Qn).
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Theorem 2 For finite sets S1, . . . , Sn ⊂ Qn, let S̃ = S1∪· · ·∪Sn. If for every
proper positive dimensional face F of conv(S̃) we have F ∩ Si 6= ∅ for each
i = 1, . . . , n then MV(convS1, . . . , convSn) = n! voln(conv(S̃)).

Theorem 3 Given nonempty finite sets S1, . . . , Sn ⊂ Qn, let S̃ = S1∪· · ·∪Sn.
If every positive dimensional face F of conv(S̃) satisfies one of the following
conditions:

(A) F ∩ Si 6= ∅ for all i ∈ {1, . . . , n};
(B) F ∩ Si is a singleton for some i ∈ {1, . . . , n};
(C) For each i ∈ I := {i | F ∩Si 6= ∅}, F ∩Si is contained in a common coor-

dinate subspace of dimension |I|, and the projection of F to this subspace
is of dimension less than |I|;

then MV(conv(S1), . . . , conv(Sn)) = n! voln(conv(S̃)).

These theorems transform the mixed volume of n polytopes into normalized
volume of a single polytope in the same ambient space — the convex hull of
their union. Computationally, the potential advantage is three-fold:

1. When some of the Si’s contain common points, such redundancy is removed
in the union S̃ := S1 ∪ · · · ∪ Sn in the sense that |S̃| < |S1| + · · · + |Sn|.
Since the number of vertices plays an important role in the complexity of
algorithms for manipulating polytopes, it may be much more efficient to
study conv(S̃) in such cases.

2. In forming the union S̃ := S1 ∪ · · · ∪ Sn, certain vertices of some of the
conv(Si) may no longer be vertices of conv(S̃) and hence can be ignored
in computing n! vol(conv(S̃)).

3. Currently, there appear to be a greater variety of efficient algorithms for
volume computation than for mixed volume computation (see [11] and
[25]).

The combined effect of these computational advantages can lead to substantial
reduction of computational costs for certain problems as we shall demonstrate.
Moreover, the equivalence of mixed volume and normalized volume is likely to
lead to alternative algorithms for approximating mixed volume since there are
well-studied polynomial time algorithms for approximating volume in general.

Of course, this transformation can also be used in reverse: The volume
of a single polytope could be reduced to mixed volume of several simpler
polytopes which can potentially be easier to compute. Indeed, this idea was
used in the author’s recent work [18] (with Robert Davis) to show that the
normalized volume of a free sum of two polytopes is simply the product of
their normalized volume.

Interestingly, this problem is also studied by Frédéric Bihan and Ivan So-
prunov around the same time [10] from a different point of view. In particular,
Theorem 2 turns out to be a special case of their more general results.

This paper is structured as follows: §2 shows a geometric the connection
between mixed volume and volume via a simple example. §3 reviews concepts
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Q1 + Q2 =

M.C.

M.C.

Fig. 2 Q1, Q2, the Minkowski sum Q1 +Q2, and the mixed cells (M.C.) inside it

to be used. The main proofs are given in §4. They are generalized to the semi-
mixed cases in §5. Their applicability are demonstrated in §6 via problems from
real-world applications. §7 highlights the potentially substantial reduction in
computational costs achieved by these transformations. Finally, §8 explores
the implication in the polyhedral homotopy method for solving polynomial
systems.

2 A geometric motivation

Before presenting the proofs, we use a simple example to show intuitively why
there could be any connections between mixed volume of several polytopes
and the normalized volume of the convex hull of their union at all.

Consider the simple 2-dimensional example shown in Figure 2 with

Q1 = {(0, 0), (0, 2), (2, 0), (2, 2)}
Q2 = {(0, 0), (1, 2), (2, 1)}

which satisfies the assumptions in Theorem 2: all edges of conv(Q1∪Q2) inter-
sect with both Q1 and Q2. In Figure 2, we can easily see that the Minkowski
sum Q1 + Q2 contains a copy of Q1 and a copy of Q2. Under the scaling of
Q1 7→ λ1Q1 and Q2 7→ λ2Q2, the area of those copies of Q1 and Q2 are scaled
by λ21 and λ22 respectively. The remaining regions whose area will scale with
the factor λ1 ·λ2 are known as mixed cells. The sum of the areas of these mixed
cells is exactly the mixed volume [43]. In this case, the mixed volume is 8.

We now examine the growth rate of the normalized volume v(λ) = 2 vol2(Q1∪
λQ2) as a function of the positive real scalar λ. From Figure 3, we can see
it is a piecewise function: For λ ≤ 1, λQ2 is contained in Q1, therefore v(λ)
remains a constant; For 1 ≤ λ ≤ 4

3 , vertices of λQ2 start to push out of Q1

while edges remain partially in Q1, and v(λ) grows linearly; Finally, for λ > 4
3 ,

an edge of λQ2 leaves Q1, and v(λ) grows quadratically.

Indeed, it is easy to verify that

v(λ) = 2 vol2(convQ1 ∪ λQ2) =


8 if λ ≤ 1

8λ if 1 < λ ≤ 4
3

4λ+ 3λ2 if λ > 4
3 .
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(a) For λ <
1, v(λ) remains
constant

(b) For 1 ≤ λ ≤
4/3, v(λ) grows
linearly

(c) For λ = 4/3 (d) For λ > 4/3,
v(λ) grows quadrat-
ically

Fig. 3 The growth rate of v(λ) = 2 vol2(Q1 ∪ λQ2) for different ranges of λ.

That is, for any λ ∈ [1, 4/3],

v(λ) = 2 vol2(Q1 ∪ λQ2) = MV(Q1, λQ2).

This interval [1, 4/3] for λ is precisely the interval for which the pair (Q1, λQ2)
satisfies the conditions in Theorem 2, i.e., all edges of conv(Q1 ∪Q2) intersect
both Q1 and Q2. This example also shows that the conditions required by
Theorem 2 are not just very special configurations of two polytopes but can
remain valid under a range of scaling.

A more direct connection between the normalized volume and mixed vol-
ume can be visualized through mixed cells (Figure 2). Recall that the sum of
the area of the mixed cells is precisely the mixed volume. As shown in Fig-
ure 4, for λ ∈ [1, 4/3], e.g. λ = 1.2 (Figure 3(c)) two copies of conv(Q1 ∪ λQ2)
can be subdivided and rearranged to form the two mixed cells of (Q1, λQ2) in
Figure 2. Therefore, the normalized volume 2 vol2(conv(Q1∪λQ2)) is precisely
the mixed volume MV(Q1, λQ2).

Fig. 4 Two copies of conv(Q1 ∪ λQ2) rearranged to form the mixed cells for (Q1, λQ2)

The geometric observation illustrated above shows a potential connection
between the mixed volume of polytopes and the volume of the convex hull
of their union under the assumptions of Theorem 2, and this is the main
motivation behind this study. However, the author was unable to generalize
this to a proof. Using the theory of Bernshtein-Kushnirenko-Khovanskii bound
for Laurent polynomial systems, this paper presents a purely algebraic proof.
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3 Preliminaries

For a compact set Q ⊂ Rn, voln(Q) denotes its standard Euclidean volume,
and the quantity n! voln(Q) is known as its normalized volume. Given a nonzero
vector α ∈ Rn, we also define hα(Q) := min{〈q,α〉 | q ∈ Q} and (Q)α :=
{q ∈ Q | 〈q,α〉 = hα(Q)}. A convex polytope P ⊂ Rn is the convex hull of a
finite set. A subset of the form (P )α is called a face of P . Each face has a well
defined dimension. A face of dimension 0 must be a point and is known as a
vertex. Other nonempty faces are said to be positive dimensional.

The Minkowski sum of two sets A,B ⊂ Rn is A + B = {a + b | a ∈
A,b ∈ B}. Given convex polytopes Q1, . . . , Qn ⊂ Rn, the Minkowski sum
λ1Q1 + · · · + λnQn is also a convex polytope, and its volume is a homoge-
neous polynomial in the positive scalars λ1, . . . , λn. In it, the coefficient1 of
λ1 · · ·λn is the mixed volume [67] of Q1, . . . , Qn, denoted MV(Q1, . . . , Qn).
Mixed volume is symmetric, additive, and nondecreasing (see §A).

Though the main results to be established are in the realm of geometry,
our proofs take a decidedly algebraic approach via the theory of root counting.
A Laurent monomial in x = (x1, . . . , xn) induced by vector a = (a1, . . . , an) ∈
Zn is the formal expression xa = xa11 · · ·xann . A Laurent polynomial a linear
combination of distinct Laurent monomials, i.e., an expression of the form
p =

∑
a∈S caxa. The set S ⊂ Zn collecting all the exponent vectors is known

as the support of p, denoted supp(p), and the convex hull conv(S) is known as
the Newton polytope of p. For a Laurent polynomial system P = (p1, . . . , pm)
in x = x1, . . . , xn, we define V∗(P ) := {x ∈ (C∗)n | P (x) = 0}, and it consists
of components each with a well defined dimension. Of special interest in our
discussion are the components of zero dimension which are the isolated points2

in V∗(P ). This subset will be denoted by V∗0(P ). The proofs of our main results
rely on the following important theorems.

Theorem 4 (Kushnirenko [52]) For a Laurent polynomial system P =
(p1, . . . , pn) in x = (x1, . . . , xn) with identical support, S = supp(pi) for i =
1, . . . , n, we have |V∗0(P )| ≤ n! voln(conv(S)).

Theorem 5 (Bernshtein’s First Theorem [8]) For a Laurent polynomial
system P = (p1, . . . , pn) in x = (x1, . . . , xn) (with potentially different sup-
ports), |V∗0(P )| ≤ MV(conv(supp(p1)), . . . , conv(supp(pn))).

In [12], this upper bound was nicknamed the BKK bound after the works of
Bernshtein [8,9], Kushnirenko [52], and Khovanskii [47]. The condition under
which the BKK bound is exact (counting multiplicity) is stated in terms of
“initial systems”: For a Laurent polynomial p =

∑
a∈S caxa in x = (x1, . . . , xn)

and a nonzero vector α ∈ Rn, initα(p) :=
∑

a∈(S)α caxa. For a Laurent poly-

nomial system P = (p1, . . . , pm), the initial system of P with respect to α is
initα(P ) := (initα(p1), . . . , initα(pm)).

1 An alternative definition for mixed volume is the coefficient of λ1 · · ·λn in that polyno-
mial divided by n!.

2 Here, a point x ∈ V∗(P ) is said to be isolated (a.k.a. geometrically isolated) if there is
an open set in (C∗)n that contains x but does not contain any other points in V∗(P ).
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Theorem 6 (Bernshtein’s Second Theorem [8]) For a Laurent poly-
nomial system P = (p1, . . . , pn) in x = (x1, . . . , xn) with supports S1 =
supp(p1), . . . , Sn = supp(pn), if for all α ∈ Rn \ {0}, initα(P ) has no zeros
in (C∗)n, then all zeros of P in (C∗)n are isolated, and, counting multiplicity,
the total number of zeros is exactly MV(conv(S1), . . . , conv(Sn)).

Remark 7 An important fact is that the BKK bound is always attainable.
That is, fixing the supports of P , there is always some choice of the coef-
ficients for which all points in V∗0(P ) are simple (of multiplicity one), and
|V∗0(P )| = MV(conv(supp(p1)), . . . , conv(supp(pn))). In this case, P is said to
be in general position (with respect to the supports). Indeed, such choices form
a nonempty Zariski open set in the coefficient space [12,37,42,58,70,71].

4 Proofs of the main results

The proofs of the main theorems all rely on the theory of BKK bound. Given
a system of n Laurent polynomial systems P = (p1, . . . , pn) in n variables
with supports S1, . . . , Sn and Newton polytopes Qi = conv(Si). If P is in
general position (Remark 7) the C∗-root count is exactly the mixed volume
MV(Q1, . . . , Qn). For a nonsingular square matrix A, the systems A · P and
P have the exact same set of C∗-roots. Moreover, if A is chosen generically,
supp(A · P ) is exactly the union of S1, . . . , Sn. Therefore, we have

MV(Q1, . . . , Qn) = |V∗0(P )| = |V∗0(A · P )| ≤ n! vol(conv(S1 ∪ · · · ∪ Sn)).

In general, we may not have the equality because A · P itself may not be in
general position as a member of the much larger family of Laurent polynomial
systems with Newton polytopes conv(S1 ∪ · · · ∪Sn). We establish the equality
by showing under certain conditions, if P is general position, then A ·P is also
in general position.

α

Si

S̃

Fig. 5 A face of conv(S̃)
intersecting Si for certain i.

The proofs make repeated use of a simple ge-
ometric observation illustrated in Fig. 5. We state
it as a lemma for later reference:

Lemma 8 For n nonempty sets S1, . . . , Sn ⊂ Qn,
let F be a proper face of conv(S1∪· · ·∪Sn) and α be
its inner normal. For each i such that F ∩Si 6= ∅,
F ∩ Si = (Si)α.

Proof Fix an i ∈ {1, . . . , n} such that F ∩ Si 6= ∅.
If we let h = hα(conv(S1 ∪ · · · ∪ Sn)) then for
any x ∈ F ∩ Si, 〈x,α〉 = h while for any y ∈
Si\F ⊆ conv(S1∪· · ·∪Sn)\F we have 〈y,α〉 > h.
Therefore F ∩ Si = (Si)α. ut

With this lemma, we restate and prove the two main theorems listed earlier.
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Theorem 2 For finite sets S1, . . . , Sn ⊂ Qn, let S̃ = S1∪· · ·∪Sn. If for every
proper positive dimensional face F of conv(S̃) we have F ∩ Si 6= ∅ for each
i = 1, . . . , n then MV(convS1, . . . , convSn) = n! voln(conv(S̃)).

Proof We shall first prove the cases where Si ⊂ Zn for i = 1, . . . , n. Let
P = (p1, . . . , pn) be a Laurent polynomial system in x = (x1, . . . , xn) such
that supp(pi) = Si for each i. That is, pi(x) =

∑
a∈Si

ci,axa. By Theorem 5,
Theorem 6, and Remark 7, there exists a choice of the coefficients {ci,a | a ∈
Si, i = 1, . . . , n} such that P is in general position, i.e., all points in V∗0(P ) are
simple and

|V∗0(P )| = MV( conv(S1), . . . , conv(Sn) ). (1)

Now, consider a randomization [76] A ·P of P induced by a nonsingular n×n
complex matrix A = [aij ]:

A · P :=

a11 · · · a1n...
. . .

...
an1 · · · ann


p1...
pn

 =

a11p1 + · · ·+ a1npn
...

an1p1 + · · ·+ annpn

 . (2)

Since A is nonsingular, (A · P )(x) = A · (P (x)) = 0 if and only if P (x) = 0.
Therefore, A ·P and P have the same zeros. In particular, V∗0(A ·P ) = V∗0(P ),
and all of its points are simple.

With the coefficients of P already fixed, we assume entries of A are chosen
so that there are no cancellations of terms in A · P , then it is easy to verify
that the supports of the Laurent polynomials in A · P are identical which is

supp(ai1p1 + · · ·+ ainpn) = S1 ∪ · · · ∪ Sn =: S̃

for each i = 1, . . . , n. By Kushnirenko’s Theorem (Theorem 4),

|V∗0(A · P )| ≤ n! voln(conv(S̃)). (3)

Theorem 6 and Remark 7 states that the equality holds as long as for any
nonzero vector α ∈ Rn, the initial system initα(A · P ) has no zero in (C∗)n.
Let F := (conv(S̃))α. If F is a vertex, i.e., F = {a} for some a ∈ S̃, then each
component of initα(A ·P ) has only one term: the term involving xa. Therefore
initα(A · P ) has no zero in (C∗)n. Otherwise, F is positive dimensional and
hence, by assumption, F intersects each Si. By Lemma 8, F ∩ Si = (Si)α for
each i = 1, . . . , n. Therefore,

initα(A·P ) =



n∑
i=1

a1i
∑

a∈F∩Si

ci,axa

...
n∑
i=1

ani
∑

a∈F∩Si

ci,axa


= A·



∑
a∈F∩S1

c1,axa

...∑
a∈F∩Sn

cn,axa

 = A·

initα(p1)
...

initα(pn)

 .
(4)
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That is, initα(A · P ) = A · initα(P ). Recall that A is nonsingular, so initα(A ·
P ) = 0 if and only if initα(P ) = 0. But P is in general position, so

V∗(initα(A · P )) = V∗(initα(P )) = ∅.

Therefore for all nonzero vector α ∈ Rn, initα(A ·P ) has no zero in (C∗)n. Re-
call that all points in V∗0(A ·P ) are simple, so by Bernshtein’s Second Theorem
(Theorem 6), |V∗0(A · P )| = n! vol(conv(S̃)), and consequently

MV(convS1, . . . , convSn) = |V∗0(P )| = |V∗0(A · P )| = n! vol(conv(S̃)).

Since both sides of this equality are homogeneous of degree n in a uniform
positive scaling, this result directly extend to cases with Si ⊂ Qn. ut

Theorem 3 Given nonempty finite sets S1, . . . , Sn ⊂ Qn, let S̃ = S1∪· · ·∪Sn.
If every positive dimensional face F of conv(S̃) satisfies one of the following
conditions:

(A) F ∩ Si 6= ∅ for all i ∈ {1, . . . , n};
(B) F ∩ Si is a singleton for some i ∈ {1, . . . , n};
(C) For each i ∈ I := {i | F ∩Si 6= ∅}, F ∩Si is contained in a common coor-

dinate subspace of dimension |I|, and the projection of F to this subspace
is of dimension less than |I|;

then MV(conv(S1), . . . , conv(Sn)) = n! voln(conv(S̃)).

Proof We shall reuse the previous constructions: Let the Laurent polynomial
system P , nonsingular matrix A, and the randomization A ·P be those defined
in the previous proof. Then supp(A · P ) = (S̃, . . . , S̃) and

MV(conv(S1), . . . , conv(Sn)) = |V∗0(P )| = |V∗0(A · P )| ≤ n! vol(conv(S̃)).

The goal is still to establish the equality by showing for any nonzero vector
α ∈ Rn, initα(A · P ) has no zero in (C∗)n under the above assumptions.
Let F = (conv(S̃))α. If F is a vertex or satisfies condition (A), the proof for
Theorem 2 has already shown that V∗(initα(A · P )) = ∅.

To study the remaining possibilities, we may assume F is positive dimen-
sional and F ∩ Sj = ∅ for some j. Let I := {i ∈ {1, . . . , n} | F ∩ Si 6= ∅} =
{i1, . . . , im} with m = |I| < n. Then by Lemma 8, F ∩ Si = (Si)α for each
i ∈ I. Hence

initα(A · P ) =



∑
i∈I

a1i
∑

a∈F∩Si

ci,axa

...∑
i∈I

ani
∑

a∈F∩Si

ci,axa

 =



∑
i∈I

a1i initα(pi)

...∑
i∈I

ani initα(pi)

 = AI · initα(PI)

where AI is the matrix whose columns consists of the i-th columns of A for
i ∈ I and PI is the Laurent polynomial system (as a column vector) whose
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components are pi for i ∈ I. Since A is assumed to be nonsingular, AI has rank
|I|. Therefore 0 = initα(A · P ) = AI · initα(PI) if and only if initα(PI) = 0.

Case (B) Assume F satisfies condition (B), then there is at least one i1 ∈ I
for which F ∩Si1 = (Si1)α is a singleton, i.e., F ∩Si1 = {a} for some a ∈ Si1 .
Therefore, initα(pi1) = ci1,axa where ci1,a 6= 0, and hence it has no zero in
(C∗)n. Consequently,

V∗(initα(A · P )) = V∗(AI · initα(PI)) = V∗(initα(PI)) ⊆ V∗(initα(pi1)) = ∅.

That is, V∗(initα(A · P )) = ∅.

Case (C) Finally, assume F satisfies condition (C). Then supp(initα(PI)) =
(F ∩ Si1 , . . . , F ∩ Sim) lie in a common coordinate subspace of dimension
m = |I|. Let j1, . . . , jm be the indices so that ej1 , . . . , ejm form a basis for
this coordinate subspace. Then initα(PI) only involves m of the n variables
xj1 , . . . , xjm . To emphasize this, we shall write it as PF = PF (xj1 , . . . , xjm),
and it is a square system of m equations in m variables. Let π : Rn → Rm
be the projection into the common coordinate subspace, then supp(PF ) =
(π(F ∩Si1), . . . , π(F ∩Sim)). It is also assumed that the projection π(F ) is of
dimension less than m. Then the supports of PF lie in an affine subspace of
dimension less than m. Consequently

MV(supp(PF )) = MV(π(F ∩ Si1), . . . , π(F ∩ Sim)) = 0. (5)

Notice that the coefficients of PF is a subset of the coefficients of the original
system P = (p1, . . . , pn). So there is a nonempty Zariski open set CF among
the choices of coefficients for P for which PF is also in general position.

Since conv(S̃) has finitely many faces and in Zariski topology, any two
nonempty open set must intersect, without loss of generality, we may assume
the coefficients for P is chosen so that PF is in general position for all proper
positive dimensional faces F . Then by (5), V∗(PF ) = V∗0(PF ) = ∅. Recall
that PF (xj1 , . . . , xjm) is simply initα(PI) but ignoring the n − m variables
that do not actually appear. So for any x = (x1, . . . , xn) ∈ V∗(initα(PI)), we
must have (xj1 , . . . , xjm) ∈ V∗(PF ) = ∅. Therefore V∗(initα(PI)) = ∅ which
implies V∗(initα(A · P )) = V∗(initα(PI)) = ∅.

We can now conclude that under the assumptions (A),(B), and (C) for any
nonzero vector α ∈ Rn, initα(A·P ) has no zero in (C∗)n. Then by Bernshtein’s
Second Theorem (Theorem 6) |V∗0(A ·P )| = n! vol(conv(S̃)), and consequently

MV(convS1, . . . , convSn) = |V∗0(P )| = |V∗0(A · P )| = n! vol(conv(S̃)).

As in the previous case, since both sides of this equality are homogeneous
of degree n in a uniform positive scaling, this result directly extend to cases
with Si ⊂ Qn. ut

The above proofs also produced a byproduct that is potentially useful in
numerical methods for solving system of Laurent polynomials:
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Proposition 9 Let P = (p1, . . . , pn) be a Laurent polynomial system in gen-
eral position that satisfies the conditions in Theorem 2 or Theorem 3. For a
generic square complex matrix A, the system A ·P is also in general position.

This property is particularly important in the numerical homotopy con-
tinuation methods for solving Laurent polynomial systems and is explored in
§ 8.

Remark 10 (Automatic verification during volume computation) The condi-
tions for the two theorems proved above involve how faces of conv(S̃) =
conv(S1 ∪ · · ·Sn) intersect or fail to intersect each Si. These, in principle,
can be verified automatically as by-products from the process of computing
the volume of conv(S̃) using a certain kind of subdivision algorithm: If the
polytope is represented as the convex hull of a set of points, a particularly sim-
ple procedure for constructing a subdivision for the convex polytope conv(S̃)
starts with the enumeration of all its facets. Then the collection of all the
pyramids formed by the facets and a fixed interior point will be a subdivision
of the polytope. With this construction, since the set of all facets is already
generated, the conditions of the above theorems can be checked easily.

5 Turning mixed volume into semi-mixed types

With minor modifications, the above proofs generalize directly to cases where
union is taken over only a subset of the polytopes whereby transforming the
mixed volume into semi-mixed types even when the Newton polytopes are
all distinct. This transformation will be particularly beneficial when a subset
of polytopes have nearly identical (but still different) set of vertices (e.g. the
Tensor Eigenvalue Problem to be discussed in §6.4. In such cases, taking the
union over these similar subset of polytopes will not only simplify the geometric
information but also allow one to use the much more efficient algorithms for
mixed volume computation of semi-mixed types [24,35].

Corollary 11 (Semi-mixed version of Theorem 2) Given nonempty fi-
nite sets Si,j ⊂ Qn for i = 1, . . . ,m and j = 1, . . . , ki with ki ∈ Z+ and

k1 + · · · + km = n, let Qi,j = conv(Si,j), S̃i =
⋃ki
j=1 Si,j, and Q̃i = conv(S̃i).

If for each i, every positive dimensional face of Q̃i that intersect Si,j for some
j on at least two points must intersect all Si,1, . . . , Si,ki , then

MV(Q1,1, . . . , Qm,km) = MV( Q̃1, . . . , Q̃1︸ ︷︷ ︸
k1

, . . . , Q̃m, . . . , Q̃m︸ ︷︷ ︸
km

).

Proof Let P = (pij)i=1,...,m,j=1...,ki be a system of Laurent polynomials in
x = (x1, . . . , xn) with pij(x) =

∑
a∈Sij

ci,j,axa. Also define Pi = (pi1, . . . , piki)
for each i = 1, . . . ,m. We further assume the coefficients are chosen so that P
is in general position. By Bernshtein’s First Theorem (Theorem 5),

|V∗0(P )| = MV(Q1,1, . . . , Qm,km).
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Consider the randomization A · P of P induced by a nonsingular n× n block
matrix

A :=

A1

A2

. . .
Am


where each Ai = [a

(i)
j,k] is a nonsingular ki× ki matrix. Since A is nonsingular,

P (x) = 0 if and only if (A · P )(x) = A · (P (x)) = 0. So V∗0(P ) = V∗0(A · P ).
As in the proof of Theorem 2, we further assume the entries of Ai for

i = 1, . . . ,m are chosen so that there are no cancellations of terms in A · P .
Then it is easy to verify that A · P is a semi-mixed system in the sense that
among its supports each S̃i appear ki times. That is,

supp(A · P ) = ( S̃1, . . . , S̃1︸ ︷︷ ︸
k1

, . . . , S̃m, . . . , S̃m︸ ︷︷ ︸
km

).

By Bernshtein’s First Theorem (Theorem 5),

|V∗0(A · P )| ≤ MV( Q̃1, . . . , Q̃1︸ ︷︷ ︸
k1

, . . . , Q̃m, . . . , Q̃m︸ ︷︷ ︸
km

).

We shall establish the equality by examining the initial systems of A · P . For
a nonzero vector α ∈ Rn, let Fi = (Q̃i)α for i = 1, . . . ,m. We consider the
following cases:

First, if Fi is a vertex for some i, then each Laurent polynomial in initα(Ai ·
Pi) would have only one term, and hence V∗(initα(Ai · Pi)) = ∅. But

initα(A · P ) =

 initα(A1 · P1)
...

initα(Am · Pm)

 ,
So V∗(initα(A · P )), being a subset of V∗(initα(Ai · Pi)), must also be empty.

Now suppose F1, . . . , Fm are all positive dimensional. We shall fix an i ∈
{1, . . . ,m}, and let Ii = {j ∈ {1, . . . , ki} | Fi ∩ Si,j 6= ∅} which must be
nonempty. Then by Lemma 8,

initα(Ai · Pi) =



ki∑
j=1

a
(i)
1,j

∑
a∈Fi∩Si,j

ci,j,axa

...
ki∑
j=1

a
(i)
ki,j

∑
a∈Fi∩Si,j

ci,j,axa


= AIi

[ ∑
a∈(F∩Si,j)

ci,j,axa
]
j∈Ii

(6)
where AIi is the matrix containing columns of Ai indexed by Ii which is of
rank |Ii| ≤ ki. Its kernel must be {0}, so initα(Ai · Pi) = 0 if and only if∑

a∈(F∩Si,j)
ci,j,axa = 0 for each j ∈ Ii.
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If |F ∩ Si,j | = 1 for all j ∈ Ii, then each of the above Laurent polynomials
on the right hand side has only one term and hence no zeros in (C∗)n. That
is, V∗(initα(Ai · Pi)) = ∅. Consequently V∗(initα(A · P )), being a subset of
V∗(initα(Ai · Pi)) must also be empty.

Now suppose for each i = 1, . . . ,m, |Fi ∩ Si,j | > 1 for at least one j ∈ Ii,
then by assumption each Fi must intersects each of the supports Si,1, . . . , Si,ki .
So Ii = {1, . . . , ki} for each i and hence initα(A · P ) = A · initα(P ). Re-
call that A is assumed to be nonsingular, so initα(A · P ) = 0 if and only if
initα(P ) = 0. But P is assumed to be in general position, so V∗(initα(A·P )) =
V∗(initα(P )) = ∅.

The above cases have shown that for all nonzero vectorα ∈ Rn, V∗(initα(A·
P )) = ∅. Then by Bernshtein’s Second Theorem (Theorem 6),

MV(Q1,1, . . . , Qm,km) = |V∗0(P )| = |V∗0(A·P )| = MV(Q̃1, . . . , Q̃1︸ ︷︷ ︸
k1

, . . . , Q̃m, . . . , Q̃m︸ ︷︷ ︸
km

).

Since both sides of the equation are homogeneous of degree k1 + · · ·+ km = n
in any positive uniform scaling of all the polytopes, this result extends directly
to cases where each Si,j ⊂ Qn. ut

6 Case studies

In this section, we apply the theorems proved above to concrete problems
from real-world applications to reduce the mixed volume computation into
the unmixed cases (volume computation) or semi-mixed cases.

6.1 Synchronization for coupled oscillators on cycle graphs

The spontaneous synchronization in networks of interconnected oscillators is a
ubiquitous phenomenon that has been discovered and studied in a wide range
of scientific disciplines including physics, biology, chemistry, and engineering
[1,31]. Here, as a case study, we focus on a classic model proposed by Y.
Kuramoto [51]. For a network of N = n + 1 oscillators, labeled as 0, . . . , n,
one basic model for describing the behavior of the oscillators is the system of
differential equations

dθi
dt

= ωi −
n∑
j=0

ai,j sin(θi − θj) for i = 0, . . . , n (7)

where each ωi is the natural frequency of the i-th oscillator, each ai,j describes
the coupling strength between the i-th and j-th oscillator (how strongly they
influence each other), and each θi = θi(t) is the angle of the i-th oscillator.
This is a mathematical representation of the tug of war between the oscillators’
tendency to oscillate in their own natural frequencies and the influence of their
connected neighbors. “Synchronization” occurs when these two forces reach an
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equilibrium for each of the oscillators: A configuration θ = (θ0, . . . , θn) ∈ RN
is said to be in synchronization3 if dθi

dt = 0 for i = 0, . . . , n at θ, i.e.,

ωi −
n∑
j=0

ai,j sin(θi − θj) = 0 for i = 0, . . . , n (8)

which will be referred to as the synchronization system in our discussion.
The behavior of the synchronization solutions is completely understood in
cases where the underlying network forms a tree [28]. Here we shall study
the simplest cases beyond trees — cycle graphs. That is, we assume for each
0 < i < n the i-th node is directly connected to two nodes: i + 1 and i − 1,
and node 0 is directly connected to node n. With the notation i+ = (i + 1)
mod N and i− = (i− 1) mod N , the above system can be written as

ωi −
∑

j∈{i+,i−}

ai,j sin(θi − θj) = 0 for i = 0, . . . , n (9)

Note that the solutions to (8) has an inherent degree of freedom in the
sense that if (θ0, . . . , θn) is a solution, so is (θ0 + t, . . . , θn + t) for any t. It
is therefore a common practice to fix θ0 = 0 and remove the first equation
from the system, leaving us n = N − 1 nonlinear equations in the n angles
θ1, . . . , θn. Using the transformation proposed in [26], we shall turn the above
system into a Laurent polynomial system to which we can apply Theorem 3.
First, using the identity sin(θi − θj) = 1

2i (e
i(θi−θj) − e−i(θi−θj)) (9) can be

transformed into

ωi −
∑

j∈{i+,i−}

ai,j
2i

(eiθie−iθj − e−iθieiθj ) = 0 for i = 1, . . . , n. (10)

With the substitution xi := eiθi for i = 1, . . . , n, we obtain the Laurent poly-
nomial system

ωi −
∑

j∈{i+,i−}

a′i,j(xix
−1
j − xjx

−1
i ) = 0 for i = 1, . . . , n (11)

where a′i,j =
ai,j
2i and x0 = 1 is a constant. Clearly, real solutions of (9) are

represented by C∗-solutions of (11). We are interested in computing the BKK
bound of this Laurent polynomial system. By applying Theorem 3, this can
be done via volume computation which is potentially easier to compute.

Proposition 12 Let S1, . . . , Sn be the supports of (11), then

MV(conv(S1), . . . , conv(Sn)) = n! voln(conv(S1 ∪ · · · ∪ Sn)).

3 There are several related concepts of “synchronization” in this context, which are listed
in [31]. Here we only study a version of the so called frequency synchronization, a.k.a.

frequency critical points. In the general context such points are characterized by all dθi
dt

converging to a common value (not necessarily zero). However, after switching to a rotational

frame of reference, it is equivalent to requiring dθi
dt

= 0 for i = 0, . . . , n.
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Proof It is easy to verify that for each i = 1, . . . , n,

Si = {0, ei − ei+ , ei+ − ei, ei − ei− , ei− − ei, }

where e0 := 0 and e1, . . . , en are the standard basis vectors for Rn. Let F be
a positive dimensional face of Q̃ = conv(S1 ∪ · · · ∪ Sn), α be its inner normal,
and h = hα(Q̃).

First, if h = 0 then 0 ∈ F since 〈0,α〉 = 0 = h. But 0 ∈ Sj for each
j = 1, . . . , n. So F intersects all the supports S1, . . . , Sn.

Now assume h 6= 0. Since 0 ∈ Q̃ we must have h ≤ 〈0,α〉 = 0. So h < 0
and 0 6∈ F . Fix an i ∈ {1, . . . , n} such that F ∩ Si 6= ∅. If ei − ei+ ∈ F then
〈ei − ei+ ,α〉 = h. In that case,

〈ei+ − ei,α〉 = −〈ei − ei+ ,α〉 = −h > h

and hence ei+ − ei 6∈ F . By reversing the signs, we can also conclude that if
ei+ − ei ∈ F then ei− ei+ 6∈ F . By a similar argument, if F contains ei− ei−
then F cannot contain ei−−ei and vice versa. Consequently, unless F ∩Si is a
singleton F must contain one point from each of the subsets {ei−ei+ , ei+−ei}
and {ei − ei− , ei− − ei}. In other words, unless F ∩ Si is a singleton,

– F intersects both Si− and Si+ if i ∈ {2, . . . , n− 1};
– F intersects Si− if i = n; or
– F intersects Si+ if i = 1.

Recall that i− and i+ are the neighbors of node i in the cycle graph. Thus
the above observation propagate through the cycle, and we can conclude that
the positive dimensional face F either intersect some Sj at a single point or
intersect S1, . . . , Sn. Then by Theorem 3

MV(conv(S1), . . . , conv(Sn)) = n! voln(conv(S1 ∪ · · · ∪ Sn)).

ut

With the above result, we can turn the root counting problem for the
synchronization system (8) into a volume computation problem: conv(S1 ∪
· · · ∪ Sn) can be written as

∇n := conv( {0} ∪ {ai − ai+1, ai+1 − ai, ai − ai−1, ai−1 − ai }i=1,...,n )

where {
ai = 0 if i = 0 or i = n+ 1

ai = ei if i = 1, . . . , n.

Here ∇n can be considered as a convex polytope that encodes the connectiv-
ity information of the underlying network with each direct connection (edge)
contributing a pair of points in its construction. The root count of the syn-
chronization system is therefore bounded by the normalized volume of this
polytope:

Corollary 13 For a cycle graph of N = n + 1 oscillators, the number of
isolated synchronization solutions of (9) is less than or equal to n! voln(∇n).
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6.2 Noonburg’s neural network model

We now apply our results to a classical family of polynomial systems pro-
posed by V. W. Noonburg [72] for modeling the behavior of neural networks.
Though the BKK bounds of this family have been completely understood by
the analysis of Y. Zhang [81], they are still widely used as standard benchmark
problems for testing solvers for polynomial systems [3]. The applicability of
the results established above is therefore still a meaningful indication of their
usefulness.

One classical approach is to consider a neural network as a network of inter-
connected cells in which activity levels at each cell are inhibited or excited by
the activity of the other cells. Mathematically this is equivalent to an interact-
ing set of populations with the densities of each population affected negatively
or positively by its competition or cooperation with the other populations.
This analogy allows the use of the Lotka-Volterra model in the study of neu-
ral networks. A key mathematical problem in this approach is the polynomial
system

n∑
j=1

∆ijx1x
2
j − cx1 + 1 = 0

...
n∑
j=1

∆ijxnx
2
j − cxn + 1 = 0

(12)

in the variables x1, . . . , xn, where {∆ij}, with ∆ij = 0 for i = j and ∆ij = ±1
otherwise, encode the types of connections between cell i and cell j while the
constant c dictates the activity level of cells. In the following, this system is
simply referred to as the Noonburg system. Since our discussion focuses only
on the monomial structure of this polynomial system and not the coefficients,
we shall fix ∆ij = 1 for i 6= j and c = 1.1 (a particular choice of the coefficients
that appeared in several studies).

With Theorem 3, we shall show the BKK bound of (12) (which gives the
generic number of complex solution of this system) is always the normalized
volume of the convex hull of the union of the Newton polytopes of the above
system. Consequently, the BKK bound can be computed as the unmixed case
(volume computation).

Proposition 14 Let S1, . . . , Sn be the supports of the Noonburg system (12).
Then

MV(conv(S1), . . . , conv(Sn)) = n! vol( conv(S1 ∪ · · · ∪ Sn) ).

Proof We can see that for i = 1, . . . , n,

Si = {ei,0} ∪ {ei + 2ej}j=1,...,n,j 6=i .



Unmixing the mixed volume computation 17

Let F be a positive dimensional face of Q̃ := conv(S1 ∪ · · · ∪ Sn), and let
α = (α1, . . . , αn) ∈ Rn be its inner normal, then F = {x ∈ Q̃ | 〈x,α〉 = h}
where h = hα(Q̃). Since 0 ∈ Q̃, we must have h ≤ 0 = 〈0,α〉. Fix any
i ∈ {1, . . . , n} and assume |F ∩ Si| ≥ 2.

(Case 1) Suppose 0 ∈ F , then ∅ 6= F ∩ Sj 3 0 for each j = 1, . . . , n.

(Case 2) Suppose ei, ei + 2ej ∈ F for some j ∈ {1, . . . , n} and j 6= i. Then

h = 〈ei,α〉 = αi

h = 〈ei + 2ej ,α〉 = αi + 2αj

Therefore αi = h and αj = 0. But ej + 2ei ∈ Sj ⊆ Q̃, so we must have

h ≤ 〈ej + 2ei,α〉 = αj + 2αi = 2h,

i.e., h ≥ 0. Recall that h ≤ 0. So we must have h = 0 and hence 0 ∈ F
since 〈0,α〉 = 0 = h. By the argument in case 1, F intersects each Sj for
j = 1, . . . , n.

(Case 3) Finally, suppose 0, ei 6∈ F , then F ∩ Si = {ei + 2ej}j∈J for some
set J ⊂ {1, . . . , n} \ {i} with |J | ≥ 2. That is,

h = 〈ei + 2ej ,α〉 = αi + 2αj for all j ∈ J
h < 〈ei + 2ek,α〉 = αi + 2αk for all k 6∈ J and k 6= i.

So we can conclude that αj for all j ∈ J are the same. Let β be this constant,
then αi = h−2β and αk > β for all k ∈ {1, . . . , n}\({i}∪J). Now fix a distinct
pair of j, j′ ∈ J , and we shall consider Sj ⊆ S̃. Since ej + 2ei, ej + 2ej′ ∈ Sj ,
we must have

h ≤ 〈ej + 2ei ,α〉 = αj + 2αi = β + 2h− 4β = 2h− 3β

h ≤ 〈ej + 2ej′ ,α〉 = αj + 2αj′ = β + 2β = 3β

which reduce to h ≤ 3β ≤ h. That is, h = 3β and hence αi = h − 2β = β =
αj < 0 for all j ∈ J and αi < αk for any k ∈ {1, . . . , n} \ ({i} ∪ J). Therefore,

〈ei + 2ej ,α〉 = 3β = h ∀ j ∈ J
〈ej + 2ei ,α〉 = 3β = h ∀ j ∈ J
〈ej + 2ej′ ,α〉 = 3β = h ∀ j, j′ ∈ J, j 6= j′

〈ei + 2ek ,α〉 > 3β ∀ k 6∈ J
〈ek + 2ej ,α〉 > 3β ∀ k 6∈ J and j ∈ J
〈ek + 2ek′ ,α〉 > 3β ∀ k, k′ 6∈ J, k 6= k′.

Consequently,

F ∩ Sk = ∅ for any k ∈ {1, . . . , n} \ ({i} ∪ J)

F ∩ Sj = {ej + 2ei} ∪ {ej + 2ej′ | j′ ∈ J, j′ 6= j} for any j ∈ J
F ∩ Si = {ei + 2ej | j ∈ J}

Since for each j ∈ J , F ∩Sj contains only points that are linear combinations
of ei and {ej | j ∈ J}, F ∩ Sj is contained in a common coordinate subspace
of dimension m := |J |+1 spanned by {ei}∪{ej | j ∈ J}. Let π : Rn → Rm be
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the projection to this coordinate subspace. Since a point in x = (x1, . . . , xm) ∈
π(F ) still must satisfy βx1 + · · · + βxm = 3β, π(F ) is of dimension less than
m.

The above three cases have exhausted all possibilities for which F intersects
some Si on at least two points. That is, each positive dimensional face F of Q̃
satisfies one of the conditions listed in Theorem 3. Therefore,

MV(conv(S)1, . . . , conv(S)n) = n! vol(conv(S1 ∪ · · ·Sn)).

ut

6.3 Algebraic load flow equations

In power engineering, “load-flow study” is a mathematical analysis of the flow
of electric power in an network of connected devices (a power system) which
are of crucial importance in the design, operation, and control of power systems
[50]. The “load flow equations”, a family of nonlinear systems of equations,
are among the most important mathematical tools in these studies. Though
many variations of these equations have been proposed and studied, the fruitful
algebraic approach [6,7,57] has been the focus of many recent studies [27,39,
61,64,65]. Here, the mathematical abstraction of a power system is captured
by a graph G = (B,E) together with a complex matrix Y = (Yij) where
B = {0, 1, . . . , |B| − 1} is the finite set of nodes representing the “buses”, E is
the set of edges representing the transmission lines connecting buses, and the
matrix Y , known as the nodal admittance matrix, assigns a nonzero complex
value Yij to each edge (i, j) ∈ E (with Yij = Yji = 0 if (i, j) /∈ E). As a
convention, we further require all nodes to be connected with itself via a “loop”
to reflect the nonzero diagonal entries Yii known as the self-admittances. The
main interest of load flow study are the complex valued voltage on each bus
denoted by v0, v1, . . . , vn, u0, u1, . . . , un where n = |B| − 1. Among them, v0
and u0 are fixed constant while the rest are considered to be variables. In this
setup, the algebraic load flow equations is a system of 2n polynomial equations
in 2n variables:

PG,Y (v1, . . . , vn, u1, . . . , un) =



∑n
k=0 Ȳ1k v1uk − S1 = 0
...∑n
k=0 Ȳnkvnuk − Sn = 0∑n
k=0 Y1k u1vk − S̄1 = 0
...∑n
k=0 Ynk unvk − S̄n = 0

(13)

where S1, . . . , Sn ∈ C∗ are constants representing constraints chosen for the
purpose of load flow studies. The root count of this system in (C∗)2n has been
widely studied [6,7,27,57,61]. Here, we shall apply Theorem 3 to show that
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the BKK bound of (13) reduces to the unmixed case for any graph with more
than two nodes. In particular, we shall prove the conjecture that the BKK
bound of (13) is precisely the normalized volume of the “adjacency polytope”
of the graph G [26]. Using the notations e0 = 0 and (ei, ej) ∈ R2n for the
concatenation of the two vectors ei ∈ Rn and ej ∈ Rn, the adjacency polytope
of G is defined to be

∇G := conv({0} ∪ {(ei, ej)}(i,j)∈E). (14)

Note that the graph G is undirected, so for each edge (i, j) ∈ E, we must have
(j, i) ∈ E by definition. Therefore each edge in G contributes a line segment
(from (ei, ej) to (ej , ei)) in the construction of ∇G. The following conjecture
is suggested in [26]. Here, we provide a simple proof using Theorem 3:

Proposition 15 Let S1, S
′
1, S2, , S

′
2, . . . , Sn, S

′
n be the supports of (13), then

MV(conv(S1), conv(S′1), . . . , conv(Sn), conv(S′n)) = (2n)! vol2n(∇G).

Proof It is easy to verify that for i, j = 1, . . . , n

Si = {0} ∪ {(ei, ej)}j∈N (i) S′j = {0} ∪ {(ei, ej)}i∈N (j)

where N (k) denotes the set of nodes neighboring k in G. Let S̃ = S1 ∪ S′1 ∪
· · · ∪ Sn ∪ S′n. Then we can see that

∇G = conv(S1 ∪ S′1 ∪ · · · ∪ Sn ∪ S′n) = conv(S̃).

Therefore we simply have to verify that the conditions listed in Theorem 3 are
satisfied. Let F be a proper positive dimensional face of ∇G. If 0 ∈ F then F
must intersect all supports since 0 is a common point of all the supports.

Now suppose 0 6∈ F . Let K be the set of (i, j) ∈ E such that (ei, ej) ∈ F .
With π1 : Z2 → Z and π2 : Z2 → Z being the projections onto first and second
coordinates respectively, define I = π1(K)\{0} and J = π2(K)\{0}. Note that
the only supports that contains a point (ei, ej) are Si and S′j , so (ei, ej) ∈ F
implies that F ∩Si 6= ∅ and F ∩S′j 6= ∅. Moreover, the supports that intersect
F are precisely Si for i ∈ I and S′j for j ∈ J . Hence the total number of

supports that intersect F is |I|+ |J |. Also notice that F ∩ S̃ = {(ei, ej)}(i,j)∈K
is contained in the coordinate subspace spanned by {(ei,0)}i∈I ∪ {(0, ej)}j∈J
which is of dimension |I|+ |J |. Finally, we can see that the restriction of inner
normal vector of F on this coordinate subspace must be a non-constant linear
functional. Therefore the face F satisfies the condition (C) in Theorem 3.

Then by Theorem 3,

MV(S1, . . . , S
′
1, . . . , Sn, S

′
n) = (2n)! vol2n(conv(S̃)) = (2n)! vol2n(∇G).

ut

Returning to the algebraic context of the load flow equations, the above
proposition shall be interpreted as follows:
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Corollary 16 Given a graph G, the number of isolated solutions of the in-
duced algebraic load flow system (13) in (C∗)2n is bounded by the normalized
volume of the adjacency polytope ∇G.

Remark 17 We should also note that the load flow system (13) and the syn-
chronization system (8), though originally proposed in very different contexts,
are intimately related. Indeed, the synchronization system can be considered
as a specialized version of the algebraic load flow system [31]. Therefore, in
that sense, this result generalizes Corollary 13.

6.4 Tensor eigenvalue problem

Given a vector space V isomorphic to Cn (or Rn), a multi-linear form F :
(V ∗)m → Cn naturally give rise to a tensor A of order m which can be encoded
as an m-way array of dimensions [n×· · ·×n] with respect to a fixed coordinate
system. An operation central to the tensor eigenvalue problem is a form of
contraction between a tensor A and a vector x = (x1, . . . , xn) ∈ Cn given by

Axm−1 ∈ Cn where (Axm−1)j =

n∑
i2=1

· · ·
n∑

im=1

aj,i2,...,imxi2 · · ·xim .

Clearly, each entry in Axm−1 is a homogeneous polynomial in the variables
x1, . . . , xn of degreem−1. Based on this contraction operation, several different
notion of tensor eigenvalues/eigenvectors have been proposed. They can be
defined by a family of algebraic equations: Given a positive integer m′, an
eigenpair of A is a tuple (x, λ) ∈ Cn × C with x 6= 0 such that

(Axm−1)j = λxm
′−1

j for j = 1, . . . , n.

This definition depends on the choice of m′, and researchers have studied
properties of eigenpairs for different choices of m′ [73]. An eigenpair defined
thusly has an inherent degree of freedom: if (x, λ) is an eigenpair, then so is
(t ·x, tm−m′λ) for any t ∈ C. Eigenpairs related by this relation are considered
to be equivalent. From a computational point of view, it is convenient to pick
certain representatives from each equivalent class. Several different convention
for picking representatives have been proposed [73]), following standard prac-
tices of Numerical Algebraic Geometry [75,76], the additional linear equation
c>x = c0 for some complex vector c ∈ Cn has been adopted [82] as a natu-
ral criterion for picking a representative of an eigenpair — it can be verified
that for randomly chosen c ∈ Cn and c0 ∈ C, with probability one, there is
precisely one point (x, λ) in each equivalent class that will satisfy c>x = c0.
With this additional “normalization condition”, an eigenpair of A is defined
by

(Axm−1)j = λxm
′−1

j for j = 1, . . . , n,

c>x = c0.
(15)
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The upper bound on the root count of this system is established via the theory
of toric algebraic geometry [13].

At the same time, the much broader notion of generalized tensor eigenvalue
problem [14,29] has been developed: Given an m-order tensor A and an m′-
order tensor B, a vector (x, λ) = (x1, . . . , xn, λ) ∈ Cn+1 with x 6= 0 is said to
be a B-eigenpair of A if

Axm−1 = λBxm
′−1

c>x = c0.
(16)

This notion unifies several related tensor eigenvalue problems proposed pre-
viously. Indeed, it can be verified that (15) is a special case of (16) where B
is chosen to be the “identity” tensor with Bi,...,i = 1 and zero elsewhere. The
upper bound for the number of distinct number of B-eigenpair was established
[15,82] via the theory of BKK bound.4

Here, using Corollary 11, we shall show that even though (15) is a special
case of (16), the two have the same BKK bound. We start with a simple
example.

Example 18 For n = 2, m = 3, and m′ = 2, equation (15) for the [2 × 2 × 2]
tensor A = [ai,j,k] is given by

a1,1,1x1x1 + a1,1,2x1x2 + a1,2,1x2x1 + a1,2,2x2x2 − λx11 = 0

a2,1,1x1x1 + a2,1,2x1x2 + a2,2,1x2x1 + a2,2,2x2x2 − λx12 = 0

c1x1 + c2x2 + c3x3 − c0 = 0.

(17)

The supports of the these equations are

S1 = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1)}
S2 = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (0, 1, 1)}
S3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

(18)

Here, S1 and S2 are almost identical. Therefore, for computing the mixed
volume, it is advantageous to consider S̃ := S1 ∪ S2 and compute instead the
mixed volume MV(S̃, S̃, S3) which is of semi-mixed type. Indeed, there is only
one point in S1 that is not in S2 and vice versa. Therefore, for any positive
dimensional proper face F of S̃, if F ∩ S1 contains at least two points, then it
must also intersect S2. Similarly, if F ∩S2 contains at least two points then it
must also intersect S1. By Corollary 11,

MV(conv(S1), conv(S2), conv(S3)) = MV(conv(S̃), conv(S̃), conv(S3)).

4 Actually, the stronger Li-Wang extension [59] of the BKK bound was used in this anal-
ysis. This extension produces an upper bound of the root count of a polynomial system in
Cn (rather than (C∗)n). Alternatively, the stable mixed cells method [44] could potentially
produce even tighter root count bound in Cn, though it is more difficult to compute.
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On the other hand, with the tensor B = [bi,j ] of order 2, the generalized
tensor eigenvalue problem (16) becomes

a1,1,1x1x1 + a1,1,2x1x2 + a1,2,1x2x1 + a1,2,2x2x2 − λb1,1x1 − λb1,2x2 = 0

a2,1,1x1x1 + a2,1,2x1x2 + a2,2,1x2x1 + a2,2,2x2x2 − λb2,1x1 − λb2,2x2 = 0

c1x1 + c2x2 + c3x3 − c0 = 0.
(19)

The supports of the these equations are

T1 = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1)}
T2 = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1)}
T3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

(20)

So the BKK bound for the generalized tensor eigenvalue problem (19) is given
by the mixed volume MV(conv(T1), conv(T2), conv(T3)). But we can see T1
and T2 are identical, and T1 = T2 = S̃, so (19) and (17) have the exact same
BKK bound.

In this example, via a simple counting argument, we can apply Corollary
11 and show that for n = 2, m = 3, and m′ = 2, the two tensor eigenpair
formulation (15) and (16) have the exact same BKK bound. Indeed, this result
hold for any dimension/order: That is, for a fixed m′, (15) and (16) have the
same BKK bound:

Proposition 19 For fixed integers n, m, and m′, all greater than 2, the two
polynomial systems (15) and (16) have the same BKK bound.

Proof Both polynomial systems have n + 1 equations in the n + 1 unknowns
x1, . . . , xn, and λ. Let m̄ = m′ − 1, then the supports of (15) are

S1 = {(m̄ · e1, 1)} ∪ {(a, 0) ∈ (N0)n+1 : |a|1 = m− 1}
...

Sn = {(m̄ · en, 1)} ∪ {(a, 0) ∈ (N0)n+1 : |a|1 = m− 1}
Sn+1 = {(e1, 0), . . . , (en, 0),0}

where N0 = N ∪ {0} and for a vector a = (a1, . . . , an) we use the notation
|a|1 = a1 + · · · + an. Let S̃ = S1 ∪ · · · ∪ Sn and Q̃ = conv(S̃). Here, the first
n supports are almost identical. Indeed Si \ Sj = {(m̄ · ei, 1)} for any j 6= i.
This observation allows the application of Corollary 11: Given any positive
dimensional face F of Q̃. Suppose F intersects Si for some i ∈ {1, . . . , n} with
F ∩ Si containing at least two points. Since |Si \ Sj | = 1 for any j = 1, . . . , n
and j 6= i. F ∩Si cannot be contained inside Si \Sj . That is, F must intersect
each Si for i = 1, . . . , n. Therefore, by Corollary 11,

MV(conv(S1), . . . , conv(Sn+1)) = MV( Q̃, . . . , Q̃︸ ︷︷ ︸
n

, conv(Sn+1) ) (21)
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which is the BKK bound for the system (15).

On the other hand, the supports of the system (16) are

T1 = {(a, 0) ∈ (N0)n+1 : |a|1 = m− 1} ∪ {(a, 1) ∈ (N0)n+1 : |a|1 = m̄}
...

Tn = {(a, 0) ∈ (N0)n+1 : |a|1 = m− 1} ∪ {(a, 1) ∈ (N0)n+1 : |a|1 = m̄}
Tn+1 = {(e1, 0), . . . , (en, 0),0}.

Here, the first n supports are identical, so this system is naturally of semi-
mixed type. Let T := T1 = · · · = Tn. Clearly, S̃ ⊆ T , so Q̃ = conv(S̃) ⊆
conv(T ). But notice that each point of the form (a, 1) with |a|1 = m̄ can be
written as a convex combination of the points (m̄ · e1, 1), . . . , (m̄ · en, 1) ∈ S̃.
Therefore T ⊂ conv(S̃) = Q̃. Consequently, the BKK bound for (16) is

MV(conv(T1), . . . , conv(Tn), conv(Tn+1)) = MV(conv(T ), . . . , conv(T )︸ ︷︷ ︸
n

, Tn+1)

= MV( Q̃, . . . , Q̃︸ ︷︷ ︸
n

, conv(Tn+1))

= MV( Q̃, . . . , Q̃︸ ︷︷ ︸
n

, conv(Sn+1)).

Comparing this equality with (21), we can conclude that the systems (15) and
(16) have the same BKK bound. ut

7 Accelerating mixed volume computation

Via the theory of BKK bound and polyhedral homotopy, mixed volume com-
putation became an important problem in computational algebraic geome-
try. Previous sections established the conditions under which the equality
MV(Q1, . . . , Qn) = n! voln(conv(Q1 ∪ · · · ∪ Qn)) holds and demonstrated its
use in concrete problems from applications. In this section we show the sub-
stantial computational advantage that one could potentially achieve through
this transformation.

The algebraic load flow system (13) is reviewed in §6.3, and with Propo-
sition 15 we established that its BKK bound satisfies the condition given in
Theorem 3 and can therefore be computed as the normalized volume of the
“adjacency polytope” (14). In the following, we compared the actual CPU
time5 consumed by various programs for computing the BKK bound of the

5 Since most of the software packages to be used rely on randomized algorithms, the
average of CPU time from 5 different runs are used in the table. All runs are performed
on the same workstation equipped with an Intel R© CoreTM i5-3570K processor running at
3.4GHz. For a meaningful comparison, Hom4PS-3, which is designed to compute mixed
volume in parallel, is configured to use only one thread (serial mode) in this case.
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algebraic load flow equations using these two different approaches (mixed vol-
ume v.s. normalized volume). For mixed volume computation, we tested pop-
ular packages DEMiCs [68,69], MixedVol-2.0 [53], and Hom4PS-3 [22,23]. For
volume computation, we tested the widely used package lrs [5] and a new
package named libtropicana [16] (see §C) developed by the author specifically
for this project based on a pivoting algorithm similar to the core algorithm
of lrs. Table 1 shows such comparisons for the algebraic load flow equations
induced by cycle graphs consisting of 14 to 18 nodes. In all these cases, con-
verting mixed volume computation into volume computation via Proposition
15 brought consistently over 11 fold speedup.

N.o. nodes 14 15 16 17 18

BKK Bound 57344 122880 262144 557056 1179648
Mixed volume via Hom4PS-3 12.54s 27.57s 1m9.16s 2m49.05s 6m31.35s
Adj. polytope via libtropicana 1.02s 2.35s 5.68s 13.55 31.66s
Speedup ratio 12.29 11.7 12.2 12.5 12.36

Table 1 Speedup ratio of the adjacency polytope method (using libtropicana) over the
conventional mixed volume method (using Hom4PS-3) for computing the BKK bound of
the algebraic load flow equations (13) induced by cycle graphs of sizes N = 14 to N = 18.

Fig. 6 IEEE 14 bus system

As another test case, we use the stan-
dard benchmark problem of the “IEEE 14-
bus” system which represents a portion of
the actual power grid of the Midwestern
U.S.A. in the 1960s. It is one of the most
widely used nontrivial test systems. Con-
sisting of 14 nodes (shown in Fig. 6), it
induces an algebraic load flow system (13)
of 26 Laurent polynomial equations in 26
variables. Consequently, the BKK bound
computation, by definition, is the mixed
volume of 26 polytopes in R26. Theorem 3
reduces this to a problem of computing the
normalized volume of a single polytope in R26. Table 2 shows the CPU time
consumed by the two approaches and different programs. In this case, con-
verting mixed volume computation into volume computation via Proposition
15 significantly accelerated the computation of the BKK bound (i.e. generic
root count) for the algebraic load flow equations induced by the IEEE 14-bus
system. In particular, using libtropicana, this transformation achieved over 77
fold reduction in CPU time consumption!

Remark 20 From the view point of computational complexity, we must note
that the problem of computing (exact) volume of a single polytope is not inher-
ently easier than the problem of computing (exact) mixed volume of several
polytopes [30]. The computational advantage we intend to highlight here is
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Method Program BKK Bound CPU time Speedup

Mixed volume
Hom4PS-3 427680 10m33.3s –
MixedVol-2.0 427680 12m11.5s –
DEMiCs 427680 12m41.0s –

Adj. polytope
lrs 427680 27.9s 22.70×
libtropicana 427680 8.2s 77.23×

Table 2 CPU time consumed by various programs for computing the BKK bound of the
algebraic load flow system (13) induced by the IEEE 14-bus system with two different basic
approaches — computing the mixed volume of 26 polytopes v.s. computing the normal-
ized volume of the adjacency polytope. The “speedup” column indicates the speedup ratio
achieved by the adjacency polytope approach over the best run time of Hom4PS-3 using the
conventional approach of mixed volume computation.

the potentially less complicated geometry of conv(Q1∪· · ·∪Qn) comparing to
the n polytopes Q1, . . . , Qn. For instance, with the algebraic load flow system
induced by the IEEE 14-bus example, the 26 supports are originally defined
by a total of 128 points (with duplicates) while their union contain only 54
points.

8 Implications in polyhedral homotopy method

In addition to the problem of computing upper bounds for root counts, the
results established in this paper also has strong implications in the polyhedral
homotopy method for solving systems of Laurent polynomial systems.

The problem of solving systems of nonlinear polynomial equations is a fun-
damental problem in mathematics that has a wide range of applications. One
important numerical approach to this problem is the homotopy continuation
methods where a given “target” polynomial system to be solved is continu-
ously deformed into a closely related system that is trivial to solve. With an
appropriate construction, the corresponding solutions also vary continuously
under this deformation forming “solution paths” that connect the solutions of
the trivial system to the desired solutions of the target system. Then numeri-
cal “continuation methods” can be applied to track these paths and reach the
target solutions. Over the last few decades, these methods have been proven
to be reliable, efficient, pleasantly parallel, and highly scalable.

Among a great variety of different homotopy constructions, the polyhedral
homotopy method, developed by B. Huber and B. Sturmfels [43], is among the
most efficient and flexible homotopy constructions (together with “regenera-
tion” based methods, e.g., [40,41]). We shall first briefly review the construc-
tion of polyhedral homotopy: Given a system P (x) = (p1, . . . , pn) of n Laurent
polynomials in general position where x = (x1, . . . , xn) and pi =

∑
a∈Si

ci,axa,
one is interested in finding x ∈ (C∗)n for which P (x) = 0. For a choice of lift-
ing functions ω = (ω1, . . . , ωn) with each ωi : Si → Q having sufficiently
generic images, the polyhedral homotopy for P with respect to the “liftings”
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ω is given by

H(x, t) =


∑

a∈S1
c1,axatω1(a)

...∑
a∈Sn

cn,axatωn(a).

(22)

Clearly, H(x, 1) ≡ P (x). It can also be shown that for P in general position,
the solutions of H(x, t) = 0 varies smoothly as t varies in (0, 1) ⊂ R forming
smooth solution paths. Moreover, all isolated solutions of P (x) = 0 in (C∗)n
can be obtained as end points of these solution paths at t = 1. Since for
any fixed t ∈ (0, 1), H(x, t) has the same supports as P itself, the number of
solution paths is precisely the BKK bound MV(conv(S1), . . . , conv(Sn)). It is
intuitively clear that the total number of paths is a key factor in the overall
computational complexity of the polyhedral homotopy method. An apparent
difficulty in the above construction is that at t = 0, H(x, t) = H(x, 0) ≡ 0
(or becomes undefined) and hence the starting points of the paths cannot be
identified. This difficulty is surmounted via a process known as “mixed cell
computation” [43]. Once the mixed cells are computed, the starting points
of the solution paths can be located easily and efficiently. Then numerical
continuation methods can be applied to trace these paths and reach all isolated
solutions of P (x) = 0 in (C∗)n. The results established above have important
implications in the application of polyhedral homotopy method:

Proposition 21 Let P (x) = P (x1, . . . , xn) be a system of n Laurent polyno-
mials in general position. Under the assumptions of Theorem 2 or Theorem 3,
for almost all n× n matrix A, the polyhedral homotopies (22) constructed for
P and A · P define the same number of solution paths.

From a computational view point, this transformation from the problem
of solving P = 0 to the problem of solving its randomization A · P = 0 has
the following potential benefits:

1. Turning the homotopy function H into the “unmixed” form where each
equation involves the exact same set of terms significantly simplifies the
scheme for simultaneous evaluation of H and its partial derivatives (e.g.
[49,54,80]) which is a particularly computationally intensive task in this
method.

2. The matrix A can be chosen to improve the numerical condition of the
equation H(x, t) = 0 which plays a crucially important role in the overall
efficiency and stability of the numerical homotopy methods [2,55,76].

3. As demonstrated in §7, this transformation potentially accelerates the com-
putation of BKK bound which is a crucial preprocessing step that can be
particularly time consuming for large systems.

4. In this “unmixed” form, the collection of mixed cells required for locating
the starting points of homotopy paths is equivalent to a simplicial subdivi-
sion of the Newton polytope [35,43,55,77]. Therefore if such a subdivision
is used to compute the normalized volume, the starting points of homotopy
paths can be located easily as by-products.
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9 Concluding remarks

In this paper, we established sufficient conditions under which the mixed vol-
ume of several convex polytopes is exactly the normalized volume of the con-
vex hull of their union. Though originally motivated by geometric observations
(§ 2), our proofs are purely algebraic and relied on the theory of BKK bound.
We also generalized the result to semi-mixed volume (mixed volume of semi
mixed systems where polytopes may carry multiplicity) which appears natu-
rally in various counting problems including the classical problem of counting
Nash equilibria [33,62,63] in game theory.

We applied the resulting theory to a wide range of well known problems
in science and engineering including Noonburg’s neural network model, Ku-
ramoto model for synchronization, load flow equations from electric engineer-
ing, and the tensor eigenvalue problem. In all these cases, the root counting
problem originally formulated as mixed volume can be reduced to the problem
of volume computation or much simplified semi-mixed volume computation
problem. Even though asymptotically volume computation is not inherently
easier than mixed volume computation [30], these transformations greatly re-
duced the total number of vertices and polytopes involved in these cases, and
as a result we expect great reduction in time and memory requirements when
computing these root counts. In the case of the load flow equations, our ex-
periment with a standard test case problem (IEEE 14 bus) shows a 77 fold
reduction in CPU time! These results have since found deeper applications to
the study of Kuramoto model [19,20].

The results established here are closely related to the works by Frédéric
Bihan and Ivan Soprunov appeared around the same time [10] in which deeper
analysis from a geometric view point were carried out. On the algebraic side, it
is reasonable to ask if our results can be generalized to the theory of Newton-
Okunkov bodies [46] which are much more powerful generalization of Newton
polytopes. Preliminary studies produced some positive answers:

– In the cases of Kuramoto equations induced by cycle graphs, not only the
mixed volume of Newton polytopes but also the mixed volume of Newton-
Okunkov bodies are reduced to volume [20].

– The techniques employed in this study is also capable of reducing the mixed
volume of Newton-Okunkov bodies into mixed volume of Newton poly-
topes [17] under a similar condition.

The general situation, however, remains an open problem.

A Monotonicity of mixed volume

The mixed volume MV(Q1, . . . , Qn), as a function that takes n convex polytopes, mono-
tone in each of its arguments in the sense that if Q′1 ⊆ Q1 then MV(Q′1, Q2, . . . , Qn) ≤
MV(Q1, Q2, . . . , Qn). The same applies for all arguments. Since Qi ⊆ Q̃ := conv(Q1 ∪ · · · ∪
Qn) for each i = 1, . . . , n, the inequality

MV(Q1, . . . , Qn) ≤ MV(Q̃, . . . , Q̃) = n! vol(Q̃)
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always hold regardless of the relative position of the polytopes. The present contribution
shows that the equality can hold even when each Qi is strictly contained in Q̃.

B Modifications to polyhedral homotopies

The apparent limitations of the construction of the polyhedral homotopy (22) are that the
target system P (x) is assumed to be in general position, zeros in Cn \ (C∗)n may not be
reached, and the numerical condition of the equation H(x, t) = 0 may be poor. These
limitations are surmounted by modifications proposed in subsequent studies [44,48,54,59,
74]. A commonly used extension of (22) with respect to the same liftings and target system
is given by

H(x, t) =


∑

a∈S1
[(1− et)c∗1,a + etc1,a](Bx)aeω1(a)t + (1− et)ε∗1

...∑
a∈Sn

[(1− et)c∗n,a + etcn,a](Bx)aeωn(a)t + (1− et)ε∗n.

where ci,a and εi are generic complex numbers and Bx = (b1x1, . . . , bnxn) with bi ∈ R+

is chosen to properly improve the numerical stability. It can be shown that as t varies from
−∞ to 0, the solutions of H(x, t) = 0 also vary continuously forming smooth solution paths
that collectively reach all isolated zeros of the target system P (x) in Cn. This extension has
been adopted in PHoM [38], Hom4PS-2.0 [54], and Hom4PS-3 [21]. A variation of it can also
be found in recent versions of PHCpack [77].

C libtropicana

The software package libtropicana6 is developed by the author specifically to carry out the
experiments shown in §7. Given a convex polytope in Zn, it computes a regular subdivision
and also produces the normalized volume of the polytope as a byproduct. It is based on a
pivoting algorithm similar to the core algorithm of lrs [4]. But unlike lrs, which puts a special
emphasis on memory efficiency and accuracy, libtropicana focuses on speed (potentially at
the expense of higher memory consumption) and moderate sized polytopes. It is written
completely in C++ with optional interface for leveraging BLAS and spBLAS (Sparse BLAS)
routines. libtropicana is open source software. Users may freely distribute its source under
the terms of the LGPL license.
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