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Locating the stationary points of a real-valued multivariate potential energy function is an
important problem in many areas of science. This task generally amounts to solving simul-
taneous nonlinear systems of equations. While there are several numerical methods that
can find many or all stationary points, they each exhibit characteristic problems. More-
over, traditional methods tend to perform poorly near degenerate stationary points with
additional zero Hessian eigenvalues. We propose an efficient and robust implementation
of the Newton homotopy method, which is capable of quickly sampling a large number of
stationary points of a wide range of indices, as well as degenerate stationary points. We
demonstrate our approach by applying it to the Thomson problem. We also briefly discuss
a possible connection between the present work and Smale’s 7th problem.

I. INTRODUCTION

Potential energy landscape methods have re-
cently attracted a great deal of research activ-
ity in the chemical physics community, with ap-
plications for diverse systems, such as metallic
clusters, biomolecules, structural glass formers,
coarse-grained models of soft matter, thermody-
namics, etc.1,2 Here the potential energy land-
scape is understood as the surface defined by the
potential function of the given system, which
is a multivariate nonlinear function V (x) with
x = (x1, . . . , xn).

Stationary points (SPs) of the landscape, de-
fined as solutions of the equation ∇V (x) =
(∂V/∂x1, . . . , ∂V/∂xn) = 0, are of particu-
lar interest as they can be used in global
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optimization3–5 and thermodynamic sampling
to overcome broken ergodicity.6–9 Moreover,
SPs can also be employed in the kinetic
transition network approach to rare event
dynamics.10–18

The stability of the SPs can be analyzed by
computing the eigenvalues of the Hessian ma-
trix of V (x), H(V (x))ij = ∂2V/∂xi∂xj , at the
SPs. An SP is termed degenerate if H(V (x))
at this point has any zero eigenvalues beyond
those corresponding to overall translation and
rotation, and nondegenerate otherwise. In ei-
ther case, the number of negative eigenvalues
of H(V (x)) corresponds to the Morse-index or
simply the index.
Traditionally, minima and transition states

(SPs with index 1) have played the most impor-
tant role in chemical reaction rate theory. In
many-body physics, the influence of SPs with
higher index saddles in governing the phase
transitions has been widely investigated.2 Re-
cently, phase space geometry and dynamics as-
sociated with SPs of higher index have also been
considered.19–21
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Although analytical solutions for statonary
points are unlikely to be tractable in general,
computational methods such as the Newton-
Raphson approach can rescue the situation.
However, most numerical methods have short-
comings of their own, and are not guaran-
teed to find all the solutions. In particu-
lar, the Newton-Raphson method breaks down
at singular solutions;22,23 and the gradient-
square minimization method24,25 may give nu-
merous spurious solutions, which are not phys-
ically relevant.26–28 Other more sophisticated
approaches based on the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm,29,30 and
eigenvector-following26,28 coupled with single-
and double-ended searches,31–38 may be better
alternatives.
For potentials having polynomial-like nonlin-

earity, one can employ symbolic algebraic ge-
ometry methods based on the Gröbner basis
technique,39,40 the numerical polynomial homo-
topy continuation (NPHC) method,41–44 or in-
terval based methods,45 all of which guarantee
finding all the complex solutions. Here, the
NPHC method has a practical advantage due
to its parallelizability, and it has been used to
analyse various potential energy landscapes in
recent work.46–59
For a general nonlinear system with non-

polynomial nonlinearity, only the interval based
method guarantees finding all solutions, but
the method scales badly even for moderately
sized systems. Recently, a few specialized ho-
motopies have been claimed to find all isolated
solutions for such nonlinear systems,60,61 but
rigorous analysis is still outstanding. As long
as the potential is bounded from above and be-
low, an inversion-relaxation method62 may also
find many solutions, provided that one is able
to find all the maxima of the potential.
Though not yet directly applied in molecular

science, derivative-free soft computing methods
have also proved to be efficient in finding many
solutions of nonlinear systems of equations.63–65
However, they have yet to be tested for larger
systems.
In all of the above methods, certifying if the

numerical solution indeed corresponds to an ac-

tual solution of the given system may also turn
out to be an important issue.66–68 We will ad-
dress this aspect of the problem in future work.

In the present contribution, which is a fol-
low up to our earlier Communication,23 we de-
scribe in detail a previously known but rather
underutilized method known as Newton homo-
topy. We also explain our implementation of
the method specific to exploring the potential
energy landscapes of atomic clusters. In ad-
dition, we have obtained novel results for the
potential energy landscapes of the Thomson
problem. Here our motivation is provided by
Smale’s 7th problem in the celebrated list of
eighteen unsolved mathematical problems for
the 21st century.69 This connection suggests
that progress on understanding the energy land-
scapes of the Thomson problem could provide
the foundation for fundamental insight into the
general issue of global optimisation, as briefly
discussed in the Conclusions.

In §II, we first review the construction of the
Newton homotopy for locating SPs of a poten-
tial function. §IIA highlights one key advan-
tage of the Newton homotopy method, namely
its exceptional ability in locating degenerate
SPs, where methods like Newton-Raphson and
gradient-square minimization are relatively in-
efficient. In §III we briefly review the Thom-
son problem. Finally, in §IIIA we present re-
sults for the application of the Newton homo-
topy method to the Thomson problem, includ-
ing some new results. More detailed discussion
of the technical aspects of the Newton homo-
topy method are included in Appendix §A.

II. NEWTON HOMOTOPY

This section briefly describes the construction
of the Newton homotopy in the restricted con-
text of locating SPs of a given potential func-
tion.

Our goal is to locate SPs x = (x1, . . . , xn) ∈
Rn of the target potential function V : U → R
defined on an open domain U ⊆ Rn. That is,
we would like to find points x ∈ Rn such that
∇V (x) = 0. Among many different approaches
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for solving this problem, in the present arti-
cle, we focus on the effective but underutilized
method of Newton homotopy.70–74 The general
idea of the homotopy continuation method is
to deform the target problem into a closely re-
lated problem whose solution is already known.
Then, by keeping track of the movement of the
solution under the deformation, one can poten-
tially reach the target solution.
In this approach we consider the problem of

finding SPs of V (x) within a closely related
family of potential functions: for a given point
a ∈ Rn, we define a family of potential func-
tions smoothly parametrized by a new variable
t, given by

V̂t(x) = V (x)− (1− t)∇V (a) · x. (1)

This family contains the target potential V (x)
as a member, since at t = 1, V̂1(x) ≡ V (x). As t
varies, V̂t(x) represents a smooth deformation of
the target potential function V (x). This family
is constructed so that for one of its members,
the problem of finding a SP is trivial: at t = 0,

V̂0(x) = V (x)−∇V (a) · x,

and its gradient vector, with respect to x only,
is

∇V̂0(x) = ∇V (x)−∇V (a). (2)

Clearly, by setting x = a, one obtains the equa-
tion ∇V̂0(a) = 0. Therefore x = a is an SP of
the function V̂0 : Rn → R.
We now consider the effect of the deforma-

tion (1) on the SP x = a, that is, how the SP
x = a of V̂0 relates to SPs of nearby members
of V̂t as t moves away from t = 0. As a point
of departure, we shall assume that for a choice
of a ∈ Rn, H(V ) at x = a is nonsingular. Since
H(V̂0(x)) = H(V (x)), this is equivalent to the
assumption that x = a is a nondegenerate SP
of V̂0. This assumption will be made explicit
in Assumption 1. One important result from
the local theory of smooth real-valued functions
is that under a sufficiently small perturbation,
nondegenerate SPs remain nondegenerate. Ap-
plying this observation to the family V̂t [as de-
fined in (1)], as t varies sufficiently close to 0, the

SP x = a of V̂0 simply moves accordingly to SPs
of V̂t while remaining nondegenerate, tracing
out a small piece of smooth curve. Stated for-
mally, there is a smooth curve γ0 ⊂ Rn×R, how-
ever short, such that for every point (x, t) ∈ γ0,
x is a nondegenerate SP of the real-valued func-
tion V̂t for the corresponding t value.

The key step of the homotopy continuation
approach hinges on the “continuation” of the
small piece of curve γ0 into a curve that con-
nects the SP x = a of V̂0 to a solution we
aim to locate, i.e. an SP of the target poten-
tial function V̂1 ≡ V . The possibility for such
continuation depends on both the structure of
V (x) itself and the choice of the point a ∈ Rn.
For later reference, we state the condition un-
der which such continuation is possible as the
following assumption:

Assumption 1 (Smoothness assumption). Let
C be the set of all (x, t) ∈ Rn×[0, 1) such that x
is an SP of the real-valued function V̂t defined in
(1). We assume that the connected component
containing the point (x, t) = (a, 0) is a smooth
curve in Rn × [0, 1).

Under this assumption, let γ be the smooth
curve, in C, that contains the point (a, 0). That
is, it is the unique curve defined by

∇V̂t(x) = ∇V (x)− (1− t)∇V (a) = 0 (3)

in the x-t space passing through (a, 0). Starting
from this point, one can then numerically trace
along this curve, and when a point x = x1 and
t = 1 is reached, the point x1 is necessarily an
SP of the target potential V (x) since V̂1 ≡ V .

There is a rich selection of sophisticated nu-
merical methods for tracing the curve γ de-
fined by (3). However, within the community
of homotopy continuation methods, a special
class of methods based on a predictor-corrector
scheme has emerged as the method of choice
for its superior stability and efficiency. For
completeness, we include a technical discussion
of the scheme in Appendix §A. It is worth
noting that under the smoothness assumption,
the smooth curve γ can have “turning points”
with respect to the t-direction, as illustrated in
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Figure 1. Consequently, the variable t cannot
be used as a global parameter for the curve.
The parametrization by arc-length (Appendix
§A) in which the parameter represents the arc-
length from the starting point x = a is therefore
preferred in numerical schemes for tracing the
curve γ.

t = 0 t = 1

x = a

Figure 1. A smooth curve defined by the Newton
homotopy can have “turning points” with respect
to the t-direction.

Remark 1. While much of the theory and
many of the implementations have been devel-
oped under the smoothness assumption, we note
that the success of Newton homotopy is not en-
tirely reliant on the validity of this assumption.
Indeed, in many cases where this assumption
fails to hold, Newton homotopy can still be used.
In particular, one can relax this assumption sig-
nificantly and allow “simple branch points” to
appear on the curve γ. The advanced techniques
for dealing with these branch points have been
studied extensively in the context of nonlinear
bifurcations.75–78

A. Locating degenerate stationary points

One important advantage of the Newton ho-
motopy method (and homotopy methods in
general) is the ability to locate degenerate SPs,
where methods like the Newton-Raphson ap-
proach may be inefficient. Consider, for exam-
ple, the real-valued function

VGO(x, y) = 29
64x

4 − x2y + y2

2 . (4)

Its SPs satisfy22

∇VGO =
{

29x3/16− 2xy = 0,
y − x2 = 0.

(5)

This system of equations has only one solu-
tion in R2, namely (0, 0), which is singular.
It is shown by Griewank and Osborne (hence,
the subscript “GO”) in22 that starting from al-
most all points in R2 \ {(0, 0)}, the Newton-
Raphson method will diverge. In other words,
the Newton-Raphson method is very unlikely
to find the SP of VGO. In contrast, in our
earlier paper,23 we obtained the singular solu-
tion of this system using the Newton homotopy
method. Here, we describe the details of our
computation for this system.

Applying Newton homotopy (3) to VGO, with
starting point (a, b) ∈ R2, the problem is trans-
formed to tracing a curve defined by

HGO :=

{ 29
16 x3 − 2xy − (1− t)( 29

16 a3 − 2ab) = 0

y − x2 − (1− t)(b− a2) = 0.
(6)

It can be verified that for almost all (a, b) in
R2, the Newton homotopy HGO, defined above,
satisfies the smoothness assumption. Further-
more, for all (a, b) ∈ R2 such that b >
119a2/128, the equation HGO(x, y, t) = (0, 0)
defines a smooth curve containing both the
starting points (a, b, 1) and (0, 0, 0). In other
words, starting from any point (a, b) with b >
119a2/128, the Newton homotopy method will
reach the degenerate SP (0, 0). We include the
proofs in Appendix §B.

For example, choosing the starting point
(a, b) = (1, 15/16), the Newton homotopy
method obtains the target degenerate SP at
(0, 0) without encountering any numerical in-
stability, since the curve defined by the Newton
homotopy (6) is actually smooth. Hence the
smoothness assumption (Assumption 1) is sat-
isfied. Therefore, numerical curve tracing algo-
rithms can be employed without any instability
problems. Figure 2 shows the projection of the
smooth curve defined by (6) using the starting
point (a, b) = (1, 15/16) onto the x-t space. The
target degenerate SP is simply a smooth point
on the curve. The degeneracy is reflected by the
fact that the curve meets t = 1 at a tangency.
However, as long as appropriate curve tracing
techniques, such as those described in Appendix
§A, are used, such tangency has no impact on
the numerical stability of the algorithm.
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Figure 2. The projection of the smooth curve de-
fined by (6) on to the x-t space (with the variable y
eliminated). The two points marked are the start-
ing point (left) and the target degenerate SP (right)
respectively.

In other words, even though the degenerate
SP (0, 0) is a singular solution of the system
of equations ∇VGO = 0, and hence infinitely
ill-conditioned, it is actually a smooth point if
considered as a member of the family of SPs of
the family of potentials (1). That is, by treat-
ing the problem as a specific instance among a
deformation of problems, the degeneracy disap-
pears.
More generally, this result appears to rep-

resent typical behavior for Newton homotopy
near degenerate SPs, especially when the Hes-
sian matrices at the SPs have corank 1. Indeed,
this phenomenon is observed in our numerical
experiments with the Thomson problem, de-
scribed in §III: a large number of degenerate
SPs are found by the Newton homotopy with-
out encountering any numerical instability.

III. THE THOMSON PROBLEM

In this section, we describe the Thom-
son problem and apply the Newton homotopy

method to explore the potential energy land-
scape of the model.

Although the Thomson model was proposed
as a representation of atomic structure,79 it has
since found widespread application in various
other areas of chemical physics. Physically, the
problem is to find the minimum energy of a
system composed of N electrons constrained
to move on the surface of a sphere (for sim-
plicity, of unit radius), considered as classical
point charges. Although the global minima for
N = 4, 6 and 12 are the expected platonic solids,
those for N = 8 and 20 are not. Generalizations
of the model have also been used to study sur-
face ordering of liquid metal drops confined in
Paul traps, to model clusters of proteins on a
shell, colloid particles, fullerene structures for
carbon clusters, etc. (see, e.g.,80–84).

From the optimization point of view, the
model has become a standard benchmark for
global optimization algorithms, and there have
been many numerical attempts to find local and
global minima.85–90 Deterministic results are
only known for N = 2, 3, 4, 5, 6 and 12.91,92

The potential energy function of the Thom-
son problem is given by

V N
Th =

∑
1≤i<j≤N

1
rij
, (7)

where rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2,
with spherical constraints x2

i + y2
i + z2

i = 1
for all i = 1, . . . , N . Our goal is to locate the
SPs of V N

Th that are configurations of N points
on the sphere at which ∇V N

Th is perpendicular
to the sphere. Stated algebraically, for this
constrained optimization problem, we can
consider the Lagrangian

LN
Th = V N

Th +
N∑

i=1
λi(x2

i + y2
i + z2

i − 1) (8)

in the 4N variables xi, yi, zi, λi for i = 1, . . . , N .
The goal is then to locate the SPs of LN

Th.
The problem can be significantly simplified

by encoding the spherical constraints implicitly
via spherical coordinates. Here we use the 2N
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variables φi, θi for i = 1, . . . , N and the trans-
formation

xi = sinφi cos θi

yi = sinφi sin θi

zi = cosφi

(9)

with all φi ∈ [0, 2π) and θi ∈ [0, π].
Since V N

Th and hence LN
Th are invariant under

any rotation, every SP is represented by a set
with three degrees of rotational freedom. This
rotational symmetry can be removed by fixing
θ1 = φ1 = θ2 = 0, leaving the 2N − 3 variables
and 2N − 3 equations in

∇LN
Th(φ1, θ1, . . . , φN , θN ) = 0. (10)

It is important to note that the above trans-
formation is singular at the “poles” (0, 0,±1)
of the sphere and hence can potentially intro-
duce extraneous or degenerate SPs. However,
such extraneous SPs are easily identified, and,
as noted in §IIA, the Newton homotopy is well
suited for handling the degeneracy caused by
the transformation.

A. Stationary Points of the Thomson Problem

When applied to the Thomson problem (10)
(with spherical coordinates), the Newton homo-
topy method was able to quickly locate a large
number of SPs over a wide range of Morse in-
dices.
Since the transformation to spherical coordi-

nates (9) is singular at the poles, it can poten-
tially introduce extraneous results that are solu-
tions to (10) (in the spherical coordinates), but
not SPs of (8). To filter out these points, each
solution of (10) found is transformed back into
Cartesian coordinates. Recall that at an SP of
V N
Th, the vector ∇V N

Th is perpendicular to the
surface of the spheres. Since at this point the
normal direction of the spheres is given by

η = (x1, y1, z1, . . . , xN , yN , zN ),

the angle between −∇V N
Th and η can be used as

a criterion for identifying extraneous solutions.

In our application to the Thomson problem, we
consider a solution extraneous when the cosine
of the angle is more than 10−5 away from 1 (in-
dicating a nonzero angle), and such points are
discarded.

Table I shows a selection of SPs of V N
Th found

by the Newton homotopy method described in
§II classified by their indices. 100 random start-
ing points are used for each N value. While
not every starting point defines a curve that
passes through t = 1 and produces an SP, col-
lectively they are able to locate a large num-
ber of SPs over a range of different indices.
Since there is an inherent permutation symme-
try in the formulation (7), each geometric con-
figuration of the N charges is represented by
multiple SPs of (7) (e.g. (x1, y1, z1, x2, y2, z2)
and (x2, y2, z2, x1, y1, z1) are distinct points in
R6 but they both represent the same geometric
configuration of two charges). Table I indicates
the distinct values for V N

Th. Table II provides
some reference data for sizes N = 4 to 7, which
was used as a check.

As noted in §IIA, the Newton homotopy
method (and homotopy methods in general)
have a special advantage in locating degen-
erate SPs when compared to the Newton-
Raphson method and gradient-square mini-
mization. This observation is supported by our
numerical experiments with the Thomson prob-
lem, for which Newton homotopy was able to
locate several degenerate SPs without encoun-
tering any numerical instability. Table III lists
a selection of SPs of VTh that appear to be de-
generate in the sense that at the approximated
SP at least one eigenvalue of H(VTh) is very
close to zero. Further analysis would be neces-
sary to distinguish the degenerate SPs from the
nondegenerate SPs listed in Table I. We leave
this analysis for future work.

It is particularly significant that all the (nu-
merically) degenerate SPs listed in Table III
were found without experiencing any numerical
instability using floating arithmetic. For exam-
ple, Figure 3 shows the change of t-values along
a (smooth) curve defined by the Newton ho-
motopy when applied to the Thomson problem
with N = 5. It is clear that the curve meets
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N\Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1(2)
4 1(2) 1(2)
5 1(6) 1(6) 1(21)
6 1(2) 1(12) 1(6) 1(2)
7 1(1) 1(32) 1(60) 1(11) 1(7)
8 1(98) 1(100) 2(120) 2(120) 1(119)
9 1(2) 1(22) 3(115) 2(119) 1(117)
10 1(101) 2(222) 2(210) 3(711) 1(191) 1(702)
11 1(205) 3(120) 2(120) 2(60)
12 1(240) 3(99) 2(710) 1(1)
13 1(111) 2(79) 1(21) 2(2)
14 2(95) 3(102) 3(24) 3(4) 1(1)
15 2(100) 2(76) 1(1) 3(95) 1(14) 1(1)
16 1(61) 3(3) 1(4) 1(2) 2(2)
17 1(4) 1(3) 4(4) 1(2) 1(2) 1(1)
18 1(9) 1(6) 5(5) 3(101) 1(10)
19 1(2) 3(9) 4(998) 2(6) 1(3)
20 1(1) 1(44) 2(6) 1(140) 2(9)
21 2(16) 2(15) 2(266) 2(3)
22 1(6) 1(8) 2(45) 3(101) 1(196) 1(4)
23 1(5) 1(24) 1(199) 3(892) 2(14)
24 1(29) 1(22) 1(105) 1(66) 2(11)
25 1(41) 1(28) 3(23) 1(76)
26 1(11) 1(26) 2(8)
27 2(10) 1(21) 2(22) 1(31)
28 2(2) 1(1) 1(25) 1(6)
29 1(1) 1(55) 1(12) 2(2) 1(2)

Table I. The number of distinct V N
Th values and the number of SPs located (including symmetry equivalent

instances) of V N
Th found by the Newton homotopy method (3) using up to 100 random starting points for

each N value. For example, the entry “1(6)” for N = 5 index 1 indicates that one distinct stationary
configuration of the 5 charges was found with 6 different representations due to the inherent permutation
symmetries.

t = 1 twice with tangency, each time produc-
ing a degenerate SP. However, these two points
are nonetheless smooth points of the curve itself
and therefore pose no problem to the numerical
stability of the curve-tracing algorithm.
Equally significant is the ability of the New-

ton homotopy to obtain multiple SPs from a
single starting point, which is illustrated in Fig-
ure 3. This capability is even more pronounced
in other cases. For example, Figure 4 shows
the t-values along another curve defined by the
Newton homotopy when applied to the N = 5
Thomson problem. The curve passes through
t = 1 at least 9 times and produces 8 (numeri-

cally) nondegenerate SPs and one (numerically)
degenerate SP.

Our experiments with the Thomson problem
suggest that this result is quite typical, as the
majority of the curves that intersect t = 1 would
continue and turn around to intersect t = 1
again.

Note that for larger N our implementation
finds SPs of indices near the middle of the pos-
sible range, that is, close to (2N − 3)/2 in
the Thomson problem case. We observed the
same type of behaviour in the case of Lennard-
Jones clusters with our the Newton homotopy
earlier,23 which may result from the fact that
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N Vmin point group PI isomers Vts point group PI isomers
4 3.674234614 Td 2 3.828427125 D4h 3
5 6.474691495 D3h 20 6.483660521 C4v 30
6 9.985281374 Oh 30 10.095867232 D3h 120
7 14.452977414 D5h 504 14.457935632 C2v 2520

Table II. Reference energies, point groups, and number of non-superimposable permutation-inversion (PI)
isomers for minima (left, energy Vmin) and transition states (right, energy Vts) of the Thomson problem
with N = 4 to 7. In this size range there is a single minimum and transition state aside from permutation-
inversion isomerism.

N Index Energy Smallest eigenvalue
4 1 3.8284271250385529 10−8

5 0 6.4746914946881624 10−16

6 2 10.964101615249158 10−6

8 4 22.438926769673078 10−10

9 5 26.946042779235700 10−5

10 7 38.624498979735144 10−5

11 4 41.477979963745099 10−6

12 3 49.606237249346833 10−6

14 6 70.924854681153874 10−6

Table III. A selection of degenerate SPs of VTh
found by the Newton homotopy (3) for a range of
N -values. The energy is the value of VTh, and the
last column indicates the order of magnitude of the
smallest eigenvalue of the Hessian matrix H(VTh).

there are exponentially more SPs in the mid-
range of indices than with indices closer to 0
or (2N − 3) as already shown with general ar-
guments applicable to most potential energy
functions.28

IV. PHYSICAL INTERPRETATION OF THE
NEWTON HOMOTOPY

This section provides a physical interpreta-
tion of the Newton homotopy construction in
the context of the Thomson problem, although
the same interpretation can be applied to any
problem of locating SPs of potential energy
landscapes. For simplicity, the natural xyz
Cartesian coordinate system is used: For an in-

0 0.5 1 1.5 2

0

10

20

t

A
rc
-l
en
g
th

Figure 3. The t-value along a curve defined by New-
ton homotopy when applied to the N = 5 Thomson
problem meets t = 1 (twice) with tangency produc-
ing two degenerate SPs.

teger N > 1, let V N
Th(x) be the potential defined

in (7) where x = (x1, y1, z1, . . . , xN , yN , zN ) ∈
R3N encodes the positions of the N charges.

As described in §II, the Newton homotopy
method starts with a random starting point
a ∈ R3N on the potential energy landscape,
that is, a random starting configuration of the
N charges on the sphere. Unless x = a
is already an SP of V N

Th, we have ∇V (a) 6=
0. For each individual electron, say the k-
th electron, the combined force exerted by the
rest of the charges according to the Coulomb
potential on this electron is given by ~fk :=
(∂V/∂xk, ∂V/∂yk, ∂V/∂zk) at x = a.

We then apply an artificial counterbalancing
force to each electron so that the net force it ex-
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Figure 4. The t-value along a single curve defined by
the Newton homotopy from a single starting point
when applied to V 5

Th. This curve intersects t = 1
nine times, and each intersection produces an SP.

periences is zero. Specifically, by applying −~fk

to the k-th electron, the net force (of the com-
bined effect of the Coulomb potential and the
artificial force) on this electron is exactly zero.
Note that the potential energy induced by this
force alone is represented by −~fk · (xk, yk, zk)
and therefore the combined potential energy of
the system of N charges is given by

V̂ (x) := V N
Th(x) +

N∑
k=1
−~fk · (xk, yk, zk)

= V N
Th(x)−∇V N

Th(a) · x.

Note that the random starting configuration
x = a is indeed an SP of this augmented en-
ergy landscape since

∇V̂ (a) = ∇V N
Th(a)−∇V N

Th(a) = 0.

Next, we keep track of the movement of the
SP as the artificial counterbalancing force is
gradually weakened. This is done by consid-
ering the potential with a parameter t

V̂t(x) := V N
Th(x)− (1− t)∇V N

Th(a) · x (11)

in which the parameter t plays the role of time in
the continuous weakening of the artificial coun-

terbalancing force. When t reaches 1, the arti-
ficial force is completely removed and the aug-
mented potential energy V̂1 is identical to the
original potential V N

Th. Comparing (11) with
(1), this process describes exactly the mathe-
matical construction of the Newton homotopy.

t = 0 t = 1

x = a

fold

fold

Figure 5. An illustration of a trajectory of the mov-
ing SP as the artificial force in (11) is gradually
weakened to zero (at t = 1) and then reverse di-
rection (t > 1). Each turning point corresponds to
a fold catastrophe that potentially produces a new
configuration.

The trajectory of the moving SP defined by
(11) can certainly be extended beyond t = 1
and return back to t = 1 again, as shown in
Figure 5. §III discussed the great benefit of this
feature: a large number of SPs can be found by
tracing a single curve. In understanding the be-
havior of the Newton homotopy beyond t = 1,
the point of view of catastrophe theory provides
an intuitive interpretation. As the value of t
exceeds 1, the artificial force applied in (11) re-
verses direction. It is hence more convenient to
use the parameter t̄ := t − 1. Also, if we write
~f = ∇V N

Th(a), then (11) becomes

V̂t̄(x) = V N
Th(x) + t̄ ~f · x.

We shall focus on the behavior after t = 1, that
is, we start with t̄ = 0. As t̄ increases, this
potential represents the application of a con-
tinuously increasing artificial force ~f onto the
system of N charges. Here, we consider V̂t̄

as a family of real-valued functions smoothly
parametrized by the single parameter t̄. One
basic consequence of catastrophe theory is that
while a generic member of this family is ex-
pected to be Morse (having only nondegenerate
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SPs), this family as a whole is likely to contain
some isolated non-Morse members. That is, in
the process of tracing the moving SP as the arti-
ficial force changes, it is likely that some isolated
degenerate SP may be encountered. While in
general the local structure near a degenerate SP
can be complicated, the celebrated classification
theorem of elementary catastrophes states that
the “generic type” of degenerate SPs can assume
only a few standard forms. In this context, the
smoothness assumption (Assumption 1) essen-
tially amounts to the assumption that the only
type of degenerate SP that can be encountered
is the simplest type: “fold catastrophes” which
correspond to the “turning points” where the
trajectory of the moving SP changes direction
in t̄. Figure 5 illustrates a typical curve de-
fined by the Newton homotopy (11) under this
smoothness assumption.
Along the trajectory, after the encounter with

a turning point (fold catastrophe), the t̄-value
decreases and if t̄ returns back to 0 (i.e. t = 1)
then the artificial force is once again removed
and the corresponding x will converge to a dif-
ferent SP of the potential V N

Th(x). Stated intu-
itively, the artificial force pulls the cluster be-
yond its breaking point and a new geometry
emerges.

V. CONCLUSIONS

Following our Communication,23 in this pa-
per we have described a Newton homotopy ap-
proach specifically adapted for the potential en-
ergy landscapes of atomic clusters. We have
shown that compared to the traditional numer-
ical solvers, our method is efficient in finding
multiple SPs of any index in the following sense:
unlike most other methods, our Newton homo-
topy implementation finds multiple SPs given a
single initial point. Another feature of the ho-
motopy approach that we have exploited in our
work is its ability to find degenerate (singular,
or non-Morse) SPs. To demonstrate this fea-
ture, we first applied our implementation to the
celebrated Griewank-Osborne (GO) system,22
whose only SP is the origin, which is a sin-

gular SP of the system. The Newton-Raphson
method (and most other numerical approaches)
are known to fail to find the SP of this sys-
tem starting from any point except the SP itself.
In an appendix, we prove that if the system is
treated with the Newton homotopy approach,
the singular SP of the GO system is straight-
forwardly obtained.

We have applied our implementation to ob-
tain some new results for the potential energy
landscape (PEL) of the Thomson problem. Lo-
cating global minima for the Thomson prob-
lem has been an active area of research for
quite some time. Our goal in the present work
is not to obtain exhaustive database for the
model, rather it is to give a proof of concept
of a method and its implementation for a par-
ticular application. Since the number of local
minima, and stationary points of higher Hes-
sian index, are expected to increase exponen-
tially with the number of charges,28,93,94 locat-
ing the global minimum becomes increasingly
more challenging. However, the rate at which
the number of stationary points increases with
N is relatively slow for the Thomson prob-
lem because the Coulomb potential is long-
ranged,95–97 which effectively smooths the land-
scape. Nevertheless, locating the true global
minimum inevitably becomes more difficult for
larger sizes. Our results in the present article
suggest that for this model the number of SPs
of any index also increases relatively slowly with
the number of charges. We also show that in
addition to the SPs, the Thomson problem pos-
sesses singular SPs, highlighting the richness of
the PEL.

From the homotopy continuation point of
view, the Thomson problem has gained special
attention because it appeared as the 7th prob-
lem in Steven Smale’s list of eighteen unsolved
problems for the 21st century.69 Leaving the
technicalities of the statement of the problem
aside, it asks us to algorithmically construct a
collection of points whose value of the energy1
is close (meaning less than O(log(N)) away) to

1 In fact, the original statement of the 7th problem is for
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the global minimum value. It has been proved
that if a sequence minimizes the Thomson prob-
lem, then it asymptotically minimizes the gen-
eral logarithmic potential,98 and vice-versa.99
(see also100 in conjuction with.66,101)

We note that the index of the initial point in
the Newton homotopy a as an SP of V0 seems
to determine the index of the first SP the curve
obtains, i.e, the index appears to be preserved
during the first homotopy run. Since, NH is
capable of finding more than one SP along one
curve, after the first SP it encounters, the curve
may snake back and forth crossing t = 1 several
times. In that case, it obtains SPs of alternating
parities in terms of the index.
We point out another homotopy based ap-

proach called the numerical polynomial ho-
motopy continuation (NPHC) method, which
guarantees to find all the complex (including
real) SPs for potentials having polynomial-like
nonlinearity.41,42 There, one needs to track as
many solution-paths as the estimated upper
bound on the number of complex solutions of
the system. When the gradient equations of
the Thomson problem are transformed to the
polynomial form, by clearing out the denomina-
tors and using dummy variables to remove the
square-root terms, the known upper bounds,
such as the Bézout bound, blow up immedi-
ately even for small system sizes, making it pro-
hibitively difficult to solve the systems, even
though the actual number of real solutions is
very small. In such situations, although the
Newton homotopy approach is not guaranteed
to find all the SPs, it has an advantage in that it
quickly finds many SPs, restricting only over the
real solutions from the beginning. A more rig-
orous comparison between the two approaches
is underway and will be published elsewhere.
Our implementation of the Newton homotopy

method finds SPs of indices close to (2N − 3)/2
when N is moderately large. While this result
may stem from the fact that the actual number
of SPs at this mid-range of indices is usually

the general logarithmic potential of which the Thom-
son problem is a special case.

exponentially greater than the number of SPs
of indices near 0 or (2N − 3), in many applica-
tions we require SPs of index 0 (minima) and
1 (transition states). An effort to restrict the
homotopy search of SPs to a given index is cur-
rently underway.

ACKNOWLEDGMENTS

DM was supported by a DARPA Young Fac-
ulty Award and an Australian Research Council
DECRA fellowship. TC was supported in part
by NSF under Grant DMS 11-15587. TC would
like to thank the Institute for Cyber-Enabled
Research at Michigan State University for pro-
viding the computational infrastructure. DM
would like to thank Carlos Beltran and Graeme
Henkelman for their critical and constructive re-
marks on a draft.

Appendix A: Tracing smooth curves

In §II, via the construction of the V̂t, the
problem of locating an SP of the target poten-
tial V is transformed into the problem of tracing
a smooth curve consisting of SPs of the family of
potential functions V̂t (of which V is a member)
in the x-t space. This section briefly outlines
the necessary numerical techniques and refers to
standard texts102–104 for comprehensive analy-
sis of this subject. Throughout, we shall assume
that the smoothness assumption (Assumption
1) is satisfied. Under this assumption, we have a
smooth curve γ passing through the point (a, 0)
such that for every point (x, t) ∈ γ, x is an SP of
V̂t. Let H(x, t) := ∇V̂t(x), then γ is the unique
smooth curve consisting of points that satisfy

H(x, t) = ∇V (x)− (1− t)∇V (a) = 0 (A1)

and passes through (a, 0). The goal is to “trace
along” γ from the starting point (a, 0) via reli-
able, efficient, and stable numerical methods. If
this smooth curve crosses the plane of Rn × R
defined by t = 1 at the point (x, 1), then, by
continuity, x is an SP of the target potential
function V .
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There is a wide range of variations on the
basic methods. Here we briefly review the
method based on Euler’s predictor and Gener-
alized Newton’s corrector :105 While in the con-
struction of the deformation V̂t, it is natural to
consider t as the designated parameter, as il-
lustrated by Figure 3 and 4, it is very common
(and indeed typical) to have “turning points”
along γ where the curve cannot be parametrized
by t. Fortunately, the smooth curve γ is al-
ways parametrized by arc length. To simplify
the notation let y = (x, t) ∈ Rn × R and write
H(y) = H(x, t). Hence we consider H as a
function H : Rn+1 → Rn where no specific vari-
able is considered as the parameter.
The arc length parameterization of γ is a

smooth function y : R+ → γ such that y(0) =
(a, 0), H(y(s)) = 0, and the tangent vector ẏ
always has unit length for all s ∈ R+. These
conditions can be characterized by the system
of differential equations

DH(y(s)) · ẏ(s) = 0
‖ẏ(s)‖ = 1

y(0) = (a, 0)
(A2)

where DH is the n× (n+ 1) Jacobian matrix of
H : Rn+1 → Rn.

Parameterizations satisfying the above sys-
tem are clearly not unique: near every point
on a smooth curve, there are always two dif-
ferent arc length parameterizations leading in
opposite directions. Therefore, to trace along a
curve without backtracking, one must be able
to determine and maintain a consistent orienta-
tion.
As stated in (A2), ẏ(s) is in the null space of

the n×(n+1) matrixDH(y(s)), which is of rank
n by the smoothness assumption. Therefore,
the (n+ 1)× (n+ 1) square matrix

[
DH(y(s))

ẏ(s)

]
must be nonsingular, and hence its determinant
never vanishes for all s ∈ R+. This result, in
turn, implies that the sign

σ(y) := sgn det
[
DH(y(s))

ẏ(s)

]
never changes along the curve for all s ∈ R+

and it can therefore be used to determines the

orientation of the parameterization. Once an
orientation σ0 = ±1 is chosen, it must be kept
consistent while tracing along the curve to pre-
vent backtracking.
In principle, any ODE solver capable of inte-

grating the above system can be used to trace
the curve. However, a “prediction-correction
scheme” is generally preferred due to numeri-
cal stability concerns.72,104 In this scheme, one
traces along the smooth curve γ via a series
of discrete “prediction-correction” steps. In a
“prediction” step, starting from a point known
to be close to γ, an efficient but potentially
less accurate numerical method is used to pro-
duce an approximation of a point “one step”
further along the curve γ in the sense of the
arc-length for some given step size. Such a pre-
diction step is followed by a “correction” step
in which Newton-like method is applied to re-
fine the prediction to within a close proximity
of the curve γ. One repeats these steps to move
forward along γ. While there are many differ-
ent choices for the “predictors” and the “correc-
tors”, the combination of Euler’s predictor and
the Generalized Newton’s corrector provides a
simple but effective combination.

Euler’s predictor

Starting from a point y0 ∈ Rn+1 on the
curve γ, Euler’s predictor simply moves one step
along the tangent direction of γ at this point
for some given step size ∆s. The tangent di-
rection ẏ is given by (A2), which can be com-
puted efficiently via the QR-decomposition of
DH(y0)> since, by construction, ẏ lies in the
one-dimensional null space of DH(y0). As a
by-product, theQR-decomposition of DH(y0)>
also allows one to quickly compute the determi-
nant

det
[
DH(y0)

∆y

]
and thereby determine the correct sign for ẏ.
With ẏ computed, the point

ŷ = y0 + ∆s · ẏ
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is produced as the resulting prediction.

Generalized Newton’s corrector

The prediction ŷ produced by the Euler’s pre-
dictor is usually inaccurate. If successive pre-
diction steps were to continue using such inac-
curate data, numerical errors would quickly ac-
cumulate to an unacceptable level. As a result,
within the community of numerical homotopy
continuation methods, it is a standard practice
to have each prediction step followed by a cor-
rection step via a series of Newton-like itera-
tions. Note, however, that the defining equa-
tion H(y) = 0 of γ has n equations and n + 1
variables (y = (x, t)), so the standard Newton’s
iteration cannot be used directly. The General-
ized Newton’s Iteration105 is therefore required:
Define the map N : Rn+1 → Rn+1 given by

N (y) = y− (DH(y))+H(y)

where (DH(y))+ is the Moore-Penrose inverse
of the n×(n+1) Jacobian matrixDH(y) ofH at
the given point y. Starting from the potentially
inaccurate prediction ŷ produced by the Euler’s
predictor detailed in the previous section, the
map N is iteratively applied to ŷ until a given
convergence criterion is met. Stated formally,
the result of the correction is

y = N k(ŷ) = N ◦N ◦ · · · ◦ N (ŷ)

where k ∈ Z+ is determined by some conver-
gence criterion.
It is, of course, possible for the Generalized

Newton’s corrector to converge too slowly or fail
to converge at all. This usually means that ei-
ther the starting point ŷ of the correction is too
far from the curve γ, or the defining equation
has become ill-conditioned. In both cases, one
should repeat the previous prediction step with
a smaller step size.

Appendix B: Newton homotopy applied to the
Griewank-Osborne system

This Appendix explains the technical proofs
for the smoothness the Newton homotopy (6)
and its ability to reach the target degenerate
SP of the Griewank-Osborne system (5).

Recall that when applied to (5), the Newton
homotopy is

HGO :=

{
29
16 x3 − 2xy − (1− t)( 29

16 a3 − 2ab) = 0
y − x2 − (1− t)(b− a2) = 0.

For smoothness, it suffices to verify that for al-
most all choices of the starting point (a, b) ∈ R2,
the equation HGO(x, y, t) = 0 defines smooth
curves in R3. This assumption is violated only
when there is a point (x, y, t) ∈ R3 such that
HGO(x, y, t) = 0 but rankDHGO(x, y, t) < 2, or
equivalently, all 2 × 2 minors of DHGO(x, y, t)
vanish. These “bad” points are defined by the
system of five equations

29
16

x
3 − 2xy − (1− t)

(
29
16

a
3 − 2ab

)
= 0

y − x
2 − (1− t)(b− a

2) = 0

23/16x
2 − 2y = 0

1/16(a
2 − b)(87x

2 − 32y)− 1/8(29a
3 − 32ab)x = 0

29/16a
3 − 2ab− 2(a

2 − b)x = 0.

The solution set2 consists of three (irreducible)
components defined by

x = 0 x = 0 x = 0
y = 0 y = 0 y = 0
t = 1 t = 1 a = 0

29a2 = 32b a = 0 b = 0.

In particular, choices of (a, b) ∈ R2 that vio-
late the smoothness assumption must satisfy ei-
ther 29a2 = 32b or a = 0, which define a set
of measure zero. Consequently, for almost all
(a, b) ∈ R2, the smoothness assumption holds
for HGO.

2 We obtained this result using the Reduce command
of Mathematica which uses a real algebraic geometry
method called cylindrical algebraic decomposition.106
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Moreover, for choices (a, b) ∈ R2 with b >
119a2/128, the curve defined by HGO(x, y, t) =
0 starting from (a, b, 0) will always reach the de-
generate SP (0, 0) of (4). To verify this result,
we can first solve for y in the second equation
in the system HGO(x, y, t) = 0 and substitute it
into the first equation, resulting in a cubic poly-
nomial equation in x with coefficients involving
a,b, and t. Its discriminant ∆ is

6(1− t)3(a2 − b)3 − 35

216 (29a3 − 32ab)2(1− t)2

We are interested in the sign of ∆ as t changes
from 1 to 0. Substituting b = r119

128 a
2, ∆ be-

comes
(1−t)2a6

220

[
−243r

2 − 3(r
3 − 27r

2 + 243r − 729)t − 1458r − 2187
]

.

Note that 220∆/(1− t)2a6 is a linear function
in t. Straightforward calculation reveals that
this function takes negative values at t = 0 and
t = 1 for any r > 0. Therefore ∆ < 0 for all
t ∈ [0, 1] and r > 0. Recall that b = 119+r

128 a2,
so for b > 119a2/128 and t ∈ [0, 1], the discrim-
inant ∆ is negative indicating that the corre-
sponding polynomial equation has a unique real
root for each fixed t. Together with the smooth-
ness assumption, these results imply that the
equation HGO(x, y, t) = (0, 0), defines a single
smooth curve in R2 × [0, 1] which necessarily
connects the starting point and the target solu-
tion (0, 0) of the system (5).
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