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SPHERICAL PROJECTIVE PATH TRACKING FOR HOMOTOPY

CONTINUATION METHODS

TIANRAN CHEN∗ AND TIEN-YIEN LI†

Abstract. Solving systems of polynomial equations is an important problem in mathematics

with a wide range of applications in many fields. The homotopy continuation method is a large class

of reliable and efficient numerical methods for solving systems of polynomial equations. An essential

component in the homotopy continuation method is the path tracking algorithm for tracking smooth

paths of one real dimension. In this regard, “divergent paths” pose a tough challenge as the tracking

of such paths is generally impossible. The existence of such paths is, in part, caused by Cn, the

space in which homotopy methods usually operate, being non-compact. A well known remedy is to

operate inside the complex projective space CPn instead. Path tracking inside CPn is the focus of

this article. Taking the Riemannian geometry of CPn into account, we derive the basic algorithm for

projective path tracking using the sphere, S2n+1, as the model of computation. Remarkable results

from numerical experiments using this method are presented.

1. Introduction. Solving systems of polynomial equations is an important prob-

lem in mathematics. It has a wide range of applications in many fields. In this article

we restrict our attention to systems of n polynomial equations in n variables with

complex coefficients of the form

P (x) =


p1 (x1, . . . , xn) =

∑
k1,...,kn

c
(1)
k1,...,kn

xk11 · · ·xknn = 0
...

...

pn (x1, . . . , xn) =
∑
k1,...,kn

c
(n)
k1,...,kn

xk11 · · ·xknn = 0

which will simply be called polynomial systems. By the Abel’s impossibility theorem

and Galois theory, explicit formulae for solutions to such systems by radicals are unlikely

to exist. As a consequence, numerical computation arises naturally in searching for

solutions to such systems. Homotopy continuation methods represent a major class of

numerical methods for this purpose.

Instead of attacking a polynomial system P (x) = 0 head on, the homotopy

continuation methods consider it as a member of a family of closely related polynomial

systems parametrized by a single real parameter. One member Q(x) = 0 of this family

should be trivial to solve, and solutions of this trivial system should be connected via

smooth solution paths to all isolated solutions of the target system P (x) = 0. More

precisely, we construct a homotopy H : Cn× [0, 1]→ Cn between the given polynomial

system P and some chosen system Q: H is a continuous map from the product space

Cn × [0, 1] to Cn such that H(x, 0) ≡ Q(x) and H(x, 1) ≡ P (x). It is common
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to further require H(x, t) to have the smoothness property: The solution set of

H(x, t) = 0 for t ∈ (0, 1) consists of a finite number of smooth paths in Cn × (0, 1),

each parametrized by t. Such solution paths can then be traced from the initial points,

the solutions of Q(x) = 0, at t = 0 to solutions of the target problem P (x) = 0 using

standard numerical techniques.

However, it could happen that a solution path does not converge to any point

in Cn, and instead its norm grows unboundedly as t → 1. Such a path is called a

divergent path. Divergent paths pose tough challenges to path tracking algorithms.

In particular, they have infinite arc length, and thus tracking such paths directly is

generally impossible. Since the genesis of general homotopy continuation methods

for solving polynomial systems, much effort has been devoted to constructing the

homotopy which minimizes the number of divergent paths. Despite the tremendous

progress made in recent years, the handling of divergent paths remains an important

problem.

Divergent paths exist, in part, because Cn is not compact as a topological space.

If we replace Cn with a compact topological space W , a compactification of Cn,

in which Cn is embedded as a dense subset, then one can show that all homotopy

paths, now in W × [0, 1], must converge to points inside W at t = 1 and have finite

arc length [22]. One of the most commonly used compactification in the context

of algebraic geometry is the complex projective space CPn. For a given homotopy

H = (h1, . . . , hn), its homogenization Ĥ(x0, x1, . . . , xn) with respect to the variables

(x1, . . . , xn), as defined in (3) in Section 3, allows us to lift the problem into CPn, since

one can consider the equation Ĥ = 0 to define solution paths in CPn.

The focus of this article is to explore the path tracking algorithm for solutions

in CPn from the point of view of the Riemannian geometry of CPn. In the following

sections, we start with an overview of the basic path tracking techniques in the affine

space Cn. Then we briefly outline the Riemannian geometry of CPn as the quotient

manifold S2n+1/S1 to make this article self-contained. From this geometric structure,

we derive the projective path tracking algorithm that works on the unit sphere S2n+1.

As a numerical algorithm, its numerical quality must be justified. We do so via the

analysis of path condition, a concept we shall introduce in Section 9. A simple yet

important technique of “dynamic row scaling” is then discussed as it is almost always

necessary in implementing a robust numerical path tracking algorithm. Furthermore,

the path condition is analyzed to show that the proposed algorithm does not artificially

pollute the path condition. Very successful computational results on a case study of

the 5-body central configuration problem with 20 equations, 20 unknowns, and a total

degree of 1, 787, 822, 080 = 410 · 310 are presented in Section 10. In our algorithm,

we chose the predictor-corrector scheme for the path tracking. There is a similar

path tracking algorithm using “Projective Newton’s iterations” alone which has been

intensively studied theoretically such as in [5], [6], [7], [8], [9], [10], [11], [12], [15], [25],
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[26], [28], [29], [30], and [31], to list a few. In Section 11, numerical results are presented

in comparing these two approaches. Remarkable efficiency of our algorithm in actual

computing justifies our choice of predictor-corrector scheme in path tracking as in all of

the software packages for solving polynomial system based on homotopy continuation

methods, including Bertini[4], PHoM[16], Hom4PS-2.0[20], and PHCpack[33].

Purely technical and well known results from Riemannian geometry are listed in

Appendices.

2. Affine path tracking. We shall briefly outline the basics of path tracking

algorithms in Cn. Fix any path γ ⊂ Cn × (0, 1) defined by the homotopy H(x, t) = 0,

by the smoothness assumption, γ can be parametrized by the t-variable, and x can be

written as a smooth function x(t) of t which satisfies H(x(t), t) = 0. Then it is easy

to see that its tangent vector ẋ = dx
dt must satisfy the system of ordinary differential

equation

(1) Hx(x(t), t) · ẋ(t) +Ht(x(t), t) = 0,

or simply Hx · ẋ = −Ht, commonly known as the Davidenko differential equation [1].

This forms the basis of the numerical path tracking algorithms with which one can

trace a solution path from its starting point. While any numerical ordinary differential

equation solver can, in principle, be applied to Equation (1) and thus be used for

path tracking, the special class of predictor-corrector method is generally preferred.

In such a scheme, an efficient but potentially inaccurate “predictor” is responsible

for producing a rough estimate of the next point on the path using the information

of known points on the path. Then a series of Newton-like “corrector” iterations is

employed to bring the point approximately back to the path.

One of the most basic predictor-corrector configuration is the duet of Euler’s

method and Newton’s iterations in which the prediction x̃(t0 + ∆t) for the value of x

at t1 = t0 + ∆t is given by

(2) x̃(t0 + ∆t) = x(t0) + ∆t · ẋ(t0) = x(t0)−∆t ·H−1x (x(t0), t0) ·Ht(x(t0), t0),

where the existence of the inverse H−1x is warranted by the smoothness property of

the homotopy construction. This prediction step is followed by a series of Newton’s

iterations: at t1 = t0 + ∆t, the equation H(x, t1) = 0 becomes a system of n equations

in n unknowns. So Newton’s iterations can be used to refine the prediction x̃(t1) with

x(k+1) = x(k) − [Hx(x(k), t1)]−1H(x(k), t1)

for k = 0, 1 . . ., where x(0) = x̃(t1) is the starting point. It is the goal of this article

to extend this predictor-corrector path tracking algorithm to the complex projective

space.
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3. Homotopy continuation in CPn. The existence of divergent paths calls for

a compactification of Cn, the space in which path tracking is performed. One of the

most commonly used compactification of Cn in the context of algebraic geometry is

the complex projective space CPn:

CPn = (Cn+1\{(0, . . . , 0)})/ ∼

where x ∼ y for x,y ∈ Cn+1 if there exists a λ ∈ C \ {0} such that x = λy. In

other words, points of CPn are one dimensional linear subspaces of Cn+1 with the

“origin” deleted. It is common to use the notation [x0 : · · · : xn] for the homogeneous

coordinate of a point in CPn with [x0 : · · · : xn] being equivalent to [λx0 : · · · : λxn]

for any λ ∈ C \ {0}. With such coordinates CPn, as a set, can be covered by subsets

Uj = {[x0 : · · · : xn] |xj 6= 0} for j = 0, . . . , n, called standard charts. Clearly, each

standard chart Uj is equivalent to Cn, as a set. These charts equip the set CPn the

structure of a 2n-dimensional smooth manifold (as well as that of an n-dimensional

complex manifold).

The zero sets of polynomials in CPn are not well defined in general since each

point in CPn has infinitely many different coordinates. However, given any polynomial

f ∈ C[x1, . . . , xn] of degree d, its homogenization

f̂(x0, . . . , xn) = xd0 · f
(
x1
x0
, . . . ,

xn
x0

)
has the property that for x = (x0, . . . , xn), f̂(λ · x) = λd · f̂(x). Hence the zero set

of f̂ is well defined in CPn, since for any λ 6= 0, f̂(λ · x) = 0 if and only if f̂(x) = 0.

Yet f̂ is still closely related to f in the sense that f̂(1, x1, . . . , xn) = f(x1, . . . , xn), i.e.,

whenever x0 6= 0, the zero sets of f̂ and f are equivalent. This common construction

allows us to “lift” a problem into the complex projective space.

To apply this to the homotopy continuation method, given a homotopy H(x1, . . . ,

xn, t) = (h1, . . . , hn) defined on Cn × [0, 1] that is algebraic in the variables x1, . . . , xn,

we shall consider their homogenizations with respect to the variables (x1, . . . , xn)

(3) ĥj(x0, . . . , xn, t) = x
dj
0 · hj

(
x1
x0
, . . . ,

xn
x0
, t

)
for each j = 1, . . . , n where dj = deg hj and the new homotopy Ĥ(x0, x1, . . . , xn, t) =

(ĥ1, . . . , ĥn), which is now defined on Cn+1 × [0, 1]. Then for any fixed t ∈ [0, 1]

the common zero set of Ĥ(x0, . . . , xn, t) in CPn is well defined. To avoid confusion,

the original solution paths defined by H = 0 in Cn × [0, 1] will be called affine

paths. Clearly, for any such affine path γ ⊂ Cn × (0, 1), the corresponding path

γ̂ = {([1, x1, . . . , xn], t) | (x1, . . . , xn, t) ∈ γ} ⊂ CPn × (0, 1) must satisfy the equation

Ĥ = 0. γ̂ will be called a projective path corresponds to γ. One key advantage of

working in CPn is that it is compact as a topological space, thus all projective paths
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defined by Ĥ = 0 must converge and be of finite length. The focus of this article is to

derive a numerical algorithm for tracking the projective paths defined by Ĥ = 0. To

do so, the unit sphere S2n+1 is chosen to be our model of computation via the well

known construction of CPn as the quotient manifold S2n+1/S1.

4. The geometry of CPn. Let S2n+1 = {x ∈ Cn+1 : ‖x‖2 = 1} be the unit

sphere of Cn+1, which is a smooth manifold of 2n+ 1 (real) dimension. It is a standard

construction to view CPn as the quotient of S2n+1 under the action of the circle

group: First of all, each point (x0, . . . , xn) ∈ S2n+1 represents a point in CPn via the

map π : S2n+1 → CPn given by (x0, . . . , xn) 7→ [x0 : · · · : xn], which is clearly onto.

However, the representative of a point in CPn is not unique, i.e., π is not 1-to-1, as

π(x) = π(λx) for any λ ∈ C∗ = C\{0}. But to leave S2n+1 invariant, we must have

|λ| = 1, i.e., λ = eiθ. So for x ∈ S2n+1, the points of the form eiθx with θ ∈ R are

exactly those that represent the same point as x itself. Formally,

π−1(π(x)) = {eiθx | θ ∈ R}.

Therefore, CPn can be identified with the set of equivalent classes {[x] : x ∈ S2n+1}
where

[x] := { eiθx | θ ∈ R }.

In fact, this identification is more than set theoretic. Let S1 = {eiθ | θ ∈ R} be the

unit circle of C which is a compact Lie group. Then the set [x] can be considered

as the orbit of x under the action of S1. So CPn can be identified with the quotient

S2n+1/S1 of S2n+1 under the action of the compact Lie group S1. This quotient is a

smooth manifold in its own right; on the other hand, it has a unique smooth structure

for which π is a smooth submersion. One can show that, with this smooth structure,

S2n+1/S1 is diffeomorphic to CPn whose smooth structure is given by the standard

charts. Thus we shall use π to denote both the onto map π : S2n+1 → CPn and the

quotient map π : S2n+1 → S2n+1/S1. This is a well known generalization of the Hopf

fibration. In the rest of this article, unless otherwise specified, we shall simply equate

CPn with the quotient manifold S2n+1/S1.

To take one step further, since S2n+1 is a Riemannian manifold, with its Rie-

mannian metric gS2n+1 inherited from the standard inner product of Cn+1 ≈ R2n+2,

the quotient map π also gives us a natural choice of the Riemannian metric on

CPn ≈ S2n+1/S1. Since π is a submersion, at each point x ∈ S2n+1, its pushforward

π∗ has a constant rank of 2n. Its kernel Vx ⊂ TxS2n+1, of real-dimension 1, is known

as the vertical space, which is simply the tangent space of the fiber over π(x) = [x].

Its orthogonal complement with respect to gS2n+1

Hx = {h ∈ TxS2n+1 | gS2n+1(h,v) = 0 ∀ v ∈ Vx}
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is known as the horizontal space, and it is a representation of the tangent space of

the quotient S2n+1/S1. There is a unique Riemannian metric g, called Fubini-Study

metric, on CPn, such that π is also a Riemannian submersion, i.e., at each point

x ∈ S2n+1,

gS2n+1(h1,h2) = g(π∗(h1), π∗(h2))

for any h1,h2 ∈ Hx. In other words, π∗ is an isometry on the horizontal space Hx.

5. Tracking projective paths via horizontal lifts. In the path tracking

algorithm to be proposed, S2n+1 is chosen to be our model. That is, in actual

computation, points of S2n+1 are used to represent points of CPn. Just like CPn,

S2n+1 is compact as a topological space. In addition, all points in S2n+1 have

coordinates with norm 1, a numerically favorable situation.

Tracking a smooth solution path γ̂ ⊂ CPn × [0, 1] defined by the equation Ĥ = 0

with parametrization x̂ : [0, 1] → CPn, it is sufficient to track a representation

x : [0, 1]→ S2n+1 in S2n+1 of the projective path x̂ in the sense that π(x(t)) = x̂(t)

for all t ∈ [0, 1]. Unfortunately, there are infinitely many such representations in S2n+1.

In particular, if x : [0, 1]→ S2n+1 is such a representation, then so is

x(1)(t) = ei·θ(t)x(t)

for any smooth function θ : [0, 1] → R. While, in principle, any choice of the

representation would allow us to obtain the end point x̂(1) that we are interested in,

the Riemannian geometry of CPn suggests a natural choice: the horizontal lift of x̂.

To explain this term, we shall first briefly outline the related concepts in Riemannian

geometry.

Recall the orthogonal decomposition of the tangent space of S2n+1 at a fixed point

x into the vertical and the horizontal space with respect to the Riemannian metric

gS2n+1 :

TxS
2n+1 = Vx ⊕Hx.

In this context, a tangent vector v ∈ TxS2n+1 is said to be horizontal if v ∈ Hx.

Similarly, a smooth vector field on S2n+1 is said to be horizontal if it is horizontal

at any point in its domain. An important consequence of π being a Riemannian

submersion is that for a given smooth vector field V̂ defined on some domain in

CPn ≈ S2n+1/S1, there is a unique smooth horizontal vector field V on S2n+1, called

the horizontal lift of V̂ , that is π-related to V̂ , i.e. π∗Vx = V̂π(x) for any x ∈ S2n+1

where the vector fields are defined.

Among the infinite number of representations of the solution path γ̂ ⊂ CPn ×
[0, 1] ≈ S2n+1/S1 × [0, 1] defined by Ĥ = 0 with a fixed parametrization x̂ : [0, 1]→
S2n+1/S1, we choose the horizontal lift of x̂, x : [0, 1] → S2n+1, in the following
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sense: When using t as the “time” parameter, we can consider the Davidenko

differential equation induced by Ĥ = 0 to define a smooth time-dependent vector

field V̂ : (0, 1) × S2n+1/S1 → TS2n+1/S1 on certain domain for which x̂(t) is a

(time-dependent) flow. Then this vector field has a unique π-related horizontal lift

V : (0, 1)×S2n+1 → TS2n+1 on S2n+1. Fix any starting point x(0) ∈ π−1(x̂(0)), there

is a unique maximally defined solution to the initial value problem

ẋ(t) = V (t,x(t))

x(0) = x(0)

which must be defined on the entire t-interval (0, 1) by the smoothness condition

of the homotopy construction. We shall call x(t) the horizontal lift of x̂(t) with

starting point x(0). That is, we shall track the unique smooth curve γ ⊂ S2n+1× [0, 1]

parametrized by x : [0, 1]→ S2n+1 that satisfies

(4)

x(0) = x(0)

ẋ(t) ∈ Hx(t)

DxĤ(x(t), t)ẋ(t) = −DtĤ(x(t), t)

This is the projective analog of the Davidenko differential equation (1).

Concerning Riemannian geometry, this choice is natural, because the submersion

π acts as an isometry along such a curve. We shall further justify this choice from three

different angles: First, among all smooth representation of γ̂ in S2n+1, the horizontal

lift is the local minimizer of the length in the sense that over each infinitesimal

t-interval, the horizontal lift has the minimum length among all representations of

γ̂, which is certainly a desirable property. Second, when the Fubini-Study metric

is used, the horizontal lift has exactly the same length as γ̂. Hence this choice of

representation does not artificially stretch the curve in length. These two properties

can be summarized by the following proposition.

Proposition 1. Fix the projective path γ̂ ⊂ CPn with its smooth parametrization

x̂ : [0, 1]→ CPn and a starting point x(0) ∈ π−1(x̂(0)). Let Γ be the set of all smoothly

parametrized curves x : [0, 1]→ S2n+1 such that π ◦ x = x̂ and x(0) = x(0). Also let

xH be the unique horizontal lift of x̂ with starting point x(0). Then

i. ‖ẋH(t)‖ ≤ ‖ẋ(t)‖ for all x(t) ∈ Γ.

ii. For any x(t) ∈ Γ and t0 ∈ (0, 1), there is a sufficiently small ε ∈ R+ such that∫ t0+ε
t0

‖ẋH(t)‖dt ≤
∫ t0+ε
t0

‖ẋ(t)‖dt.
iii.

∫ 1

0
‖ẋH(t)‖dt =

∫ 1

0
‖ ˙̂x(t)‖dt.

where ‖ • ‖ denotes norm operators induced by approperiate Riemannian metrics.

These are direct consequences of π being a Riemannian submersion, but its simple

proof is included in Section C of Appendices for completeness.

Finally, as an arguably more important benefit for numerical algorithms, it will

be shown later that the horizontal lift is the only choice that will never pollute the
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numerical condition of the path tracking problem, a concept we shall introduce in

Section 9.

6. Projective Davidenko equation in coordinates. To derive our numerical

path tracking algorithm, we need the concrete numerical representation of the projective

Davidenko differential equation (4) in coordinates. Using Cn+1 as the ambient space,

at each fixed x ∈ S2n+1 ⊂ Cn+1, the horizontal space Hx has a simple numerical

description:

Proposition 2. Via the isomorphism TxCn+1 ∼= Cn+1, Hx is given by the

subspace

Hx = {v ∈ Cn+1 | 〈x,v〉C = xHv = 0}

where xH is the conjugate transpose of vector x.

The proof, while well known, is included in Section A of Appendices for complete-

ness. Notice that this characterization of Hx is invariant under the group action of

S1, since if 〈x,v〉C = 0, then 〈eiθx,v〉C = 0 for any eiθ ∈ S1. With this formulation,

the projective Davidenko differential equation (4) can be expressed in coordinate as

(5)

(
DxĤ(x, t)

xH

)
· ẋ =

(
−DtĤ(x, t)

0

)
.

It is clear that under the smoothness condition of the homotopy Ĥ, the above

system of ODE uniquely determines the tangent vector ẋ at each point along the

curve x(t). So the projective path tracking can be reduced to the initial value problem

given by (5) on the Riemannian manifold S2n+1. This forms the foundation to build

our projective path tracking algorithm. In the following sections we will outline the

basic building blocks of the algorithm.

Remark 1. We should point out that the resulting formulation given above turns

out to be very similar to a well known technique that makes use of affine charts of CPn:

For given a = (a0, a1, . . . , an) ∈ Cn+1, the linear equation a0x0+a1x1+· · ·+anxn−1 =

0 defines a chart of CPn that is equivalent to a copy of Cn. Restricting the homotopy

construction to this particular chart yields the system:Ĥ(x(t), t) = 0

a>x(t)− 1 = 0
.

While it was originally proposed in [23] that one chooses a to be a generic vector in

Cn+1, different techniques and heuristics have been developed to choose and change the

affine charts [32]. In particular, as mentioned in [3], one would choose a = x̄/‖x‖2
in certain situations; in those cases the resulting Davidenko equation will be exactly

the same as Equation (5). Therefore in one sense, Equation (5) looks like a result
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of a specific choice of an affine chart: we always use 〈x(t)/‖x(t)‖2, •〉C = 0 as the

affine chart. Nonetheless, to the best of our knowledge, it is the first time a geometric

interpretation is provided in our work for the choice of this affine chart as the horizontal

lift in the context of Riemannian submersion. Moreover, the sphere, S2n+1, is built

into our model of computation, that is, we track paths defined on S2n+1 rather than

Cn+1. Most importantly, we believe the basic idea behind this geometric interpolation

may stimulate more general path tracking schemes in other quotient spaces such as

the weighted projective space or toric varieties in general, which the authors intend to

pursuit in the near future.

7. Spherical projective Euler’s predictor. Given a point x = x(t0) ∈ S2n+1

on (or close to) a horizontal lift of a projective path and a step size ∆t, the job of a

predictor is to produce an approximation of the point on the path at t = t0 + ∆t. In

light of Equation (5), with the ability to compute tangent vectors, almost any curve

fitting or extrapolation scheme on the sphere S2n+1 can be used as predictors. For

simplicity, we shall restrict our attention to the generalization of the Euler’s method.

A geometric interpretation of the Euler’s method in (2) is the movement of a

point along the straight line defined by the tangent vector by a certain step length.

The analogue in the context of Riemannian geometry is the exponential map Exp :

TS2n+1 → S2n+1

Exp(x,v) := γv(1)

where γv : R→ S2n+1 is a Riemannian geodesic such that γv(0) = x and γ̇v(0) = v.

It moves a point x ∈ S2n+1 along a Riemannian geodesic passing though that point

with the given initial tangent vector v ∈ TxS2n+1 for a step of unit length within

the confine of S2n+1. On S2n+1, one can verify that the geodesic with initial tangent

vector v is simply given by

γv(t) = cos(‖v‖2t)x + sin(‖v‖2t)v/‖v‖2.

Therefore, in this context, the exponential map is given by

Exp(x,v) = cos(‖v‖2)x + sin(‖v‖2)v/‖v‖2.

One can construct the generalized Euler’s method out of a scaled version of

the exponential map: We define our spherical projective Euler’s prediction

EExp : S2n+1 × R→ S2n+1 by

(6) EExp(x,∆t) := cos(‖ẋ‖2∆t)x + sin(‖ẋ‖2∆t)ẋ/‖ẋ‖2

where ∆t is the step size. It is easy to verify that EExp(x, 0) = x, EExp(x,∆t) ∈ S2n+1,

and the Riemannian distance between x and EExp(x,∆t) is exactly ‖ẋ‖2 ·∆t for any

∆t ≥ 0, agreeing with our intuition.



204 TIANRAN CHEN AND TIEN-YIEN LI

8. Spherical projective Newton’s corrector. The prediction (x′, t0 + ∆t)

produced by the projective Euler’s predictor may not be exactly on or even very close

to the projective path defined by Ĥ = 0. If the next prediction step is to start from

such an approximation, the error can quickly build up to an unacceptable level. To

curb such error accumulation, a corrector is needed to produce a refinement x′′ of the

approximate solution x′ of Ĥ = 0 at t1 = t0 + ∆t. When a corrector fails to bring

the prediction back to the path quickly and reliably, it is usually the case that the

step size ∆t used in the prediction step is too large, and the prediction should be

performed again with a smaller step size.

A natural choice of the corrector is an extension of the Newton’s iteration to the

sphere. The extension can be done in the same way the spherical Euler’s method is

constructed via the exponential map. Starting from the prediction x(1) = x′ produced

by the spherical Euler’s method, we shall construct an iterative method that produces

a sequence of points x(2),x(3), . . . that hopefully converge to some approximated

solution x′′ of Ĥ = 0 at t = t1. For the k-th iteration, using the previous point x(k−1),

the Newton direction ∆x(k) is given via the linear system(
Ĥx(x(k−1), t1)

(x(k−1))H

)
·∆x(k) =

(
−Ĥ(x(k−1), t1)

0

)
which came from the “projective Newton’s method” developed in [27]. Considering the

vector ∆x(k) as a horizontal tangent vector in Hx, the spherical Newton’s iteration is

defined as

(7) NExp(x(k−1)) := cos(‖∆x(k)‖2)x(k−1) + sin(‖∆x(k)‖2)∆x(k)/‖∆x(k)‖2.

Using this map, we can produce points

x(k) = NExp(x(k−1))

for k = 1, 2, . . . until certain convergence criteria are met. The exact convergence

criteria are implementation dependent. The Riemannian distance dS2n+1(x(k),x(k−1))

between consecutive points x(k) and x(k−1) or, in general, dS2n+1(x(k),x(k−j)) for some

j ∈ N serve as useful stopping criteria, since the shrinking of these distances is usually

a good indication of convergence. Here we refer to [20] for a list of the stopping criteria

as well as their detailed descriptions. Our preliminary implementation, equipped with

these stopping criteria, has shown competitive performance as exhibited in Section 10.

Remark 2. Note that the spherical projective Newton’s method proposed here is

very similar to the “Projective Newton’s method” introduced in [14] and [27]. One

obvious difference is that the spherical projective Newton’s method uses the exponential

map. A more important differences is the role it plays here. While the spherical

projective Newton’s method is used as the corrector in the predictor-corrector scheme

here, [14] and [27] proposed to use Projective Newton’s method alone to track the paths.

Section 11 will present detailed comparison between these two approaches.
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9. Numerical condition of paths. While it is a common misconception that

numerical algorithms find approximate solutions of a given problem, as pointed out

by Wilkinson [35], they actually compute exact solutions to a nearby problem. The

distance between the two problems is known as the backward error. Whether or not

this solution is close to the solution of the original problem depends greatly on the

sensitivity of a solution under certain perturbation of the problem. The condition

number is a numerical measurement of this kind of sensitivity. Simply put, the

condition number and errors are related by the inequality

Forward error 6 (Condition number) · (Backward error).

It is important to note that while the backward error is controlled by the algorithm and

computing devices used, the condition number is a property of the problem formulation

itself. When the condition number is sufficiently large, one cannot provably control

the forward error whenever any backward error is present.

We wish to assign such a condition number to the path tracking problem. We

found it unlikely that a single number can characterize the condition of such a complex

problem, so instead, we will introduce a weaker concept, the condition of a homotopy

path at a point, in terms of a specific linear equation: Both equations (1) and (5)

define the tangent vector of an affine or a projective path at a point in terms of a

linear system, which we shall call the tangent vector problem. Let us define the

condition number of the path at a point to be the condition number of the

tangent vector problem at that point. If a path has a sufficiently large condition

number at a point respect to a given threshold, we say the path is ill-conditioned at

that point. In general a path is said to be ill-conditioned if it is ill-conditioned at

any point on the path. The threshold, of course, depends on many factors such as the

precision of the floating point arithmetic, the desired accuracy for solutions, and the

nature of the problem or its application.

In practice, the effect of the path condition is twofold. First, it is a general

experience that large path condition leads to very slow convergence for many numerical

algorithms used for path tracking. A quantitative discussion of the computational

complexity of the path tracking in relation to the condition number can be found in

[14]. Second, when the path condition number is sufficiently large, one cannot obtain

approximations of the path tangent vector with any reasonable accuracy which will

definitely cast doubts on the validity of the final solutions obtained by the overall

homotopy continuation method. In short, the tracking of ill-conditioned paths is

slower and less trustworthy. In the following two subsections, we shall first discuss

certain basic and well known preconditioning techniques that are very important in

the context of our spherical projective path tracking algorithm. We then justify the

benefit of our path tracking algorithm with regard to path conditions.
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9.1. A dynamic preconditioning technique: row scaling. There is a large

set of well known preconditioning techniques ranging from coefficients balancing [20] to

randomization [32] that will greatly affect the path condition numbers, so it is crucial

that those techniques are applied appropriately.

Here for simplicity, we shall follow a common practice to scale the matrix Ĥx

first so that 1 is in between the first singular value, σ1, and the n-th singular value,

σn, of Ĥx, that is, 1 ∈ [σn, σ1], a numerically favorable situation. Besides the scales

of the singular values, the spread of the singular values also plays an important role in

the path condition number. This spread can partially be controlled via a simple yet

important technique of row scaling, illustrated by the following example.

Figure 1 shows the path condition along a single path when our projective path

tracking algorithm on S2n+1 is used to solve the barry problem from the PoSSo [2]

test suite. With only 3 equations, 3 unknowns, and total degree 20, one expects

no numerical difficulties, but the maximum path condition exceeds 109 in the figure.

While our path tracking algorithm with double-precision floating point arithmetic had

no trouble tracking this path, considering the simplicity of the system, this result is

certainly surprising and, to a certain extend, unsettling. From Figure 2, it appears

that the large difference in the scales of the rows in the Jacobian matrix is the cause

of such a big path condition.
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Path condition along a single path for barry

Fig. 1. Path condition, in log10 scale, along a single path tracked for solving the barry problem

using the spherical projective path tracking algorithm.

Our experiments have shown that this problem of large difference in the scale

of rows in Jacobian matrix revealed by the above observation is widespread when

homogenization technique is in use. To see why, consider a homogeneous polynomial
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Norm of rows of Jacobian matrix along a single path for barry

Fig. 2. The 2-norm of the four rows, in log10 scale, of the Jacobian matrix along the same path

shown in Figure 1 defined by Ĥ = 0, tracked using spherical projective path tracking algorithm for

solving the barry problem.

f ∈ C[x0, . . . , xn] of degree d, then each ∂f
∂xj

for j = 0, . . . , n is homogeneous of degree

d − 1 unless f is constant with respect to xj . In either case, we have ∂f
∂xj

(λx) =

λd−1 ∂f∂xj
(x). Thus for a fixed t, if we write the Jacobian matrix of F (x) = Ĥ(x, t)

with respect to x at a point x as the row matrix

J(x) =


J1
...

Jn

 then J(λx) =


λd1−1J1

...

λdn−1Jn

 ,

where di = deg fi. Namely, when the given point x is scaled by a fixed factor, the rows

in J are scaled by different factors determined by the degrees of the corresponding

polynomials. Therefore if the original system contains polynomials of very different

degrees, the difference in the scales of the rows in J can be very sensitive to the scaling

x 7→ λx.

To apply this observation to the context of spherical projective path tracking,

consider a point on a given projective path [x] = x̂(t0) for some given t0, let us pick

any point xmin ∈ Cn+1 that represents [x] for which the spread of the n singular

values of Ĥx(x, t0) is minimized among all such points in Cn+1. Since, for simplicity,

tracking paths on S2n+1, we are potentially dealing with a sub-optimal scaled version
1

‖xmin‖2 · x
min of xmin. This scaling could adversely affect the path condition number.

The problem stated above can be solved quite simply via row scaling, a basic

technique in numerical linear algebra: Clearly, the system of linear equations Jv = b
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is equivalent to AJv = Ab for any nonsingular square matrix A. So to bring all

the rows to more or less the same scale, we may take A to be the diagonal matrix

with entries 1/‖J1‖, . . . , 1/‖Jn‖. In principle any norm can be used here. Our actual

implementation uses the ∞-norm, for the ease of computation. Figure 3 shows the

path condition of the same path tracked for solving the barry problem with and without

the dynamic row-scaling technique. The difference is day and night. In solving a large

number of polynomial systems with projective path tracking, this simple technique is

helpful, and, in certain cases, essential in improving the path conditions.
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Fig. 3. The comparison between path condition of a single path tracked in solving the barry

problem using projective path tracking with (dashed) and without (solid) the dynamic row-scaling

.

However, it is important to note that while row-scaling is useful in improving

the path condition, this transformation may conceal the fact that we are near a true

singularity of a path, and thus it must be used with caution. In particular, this

technique should not be used near the endpoint at t = 1 where singularity may appear.

Near the endpoint, the so called “endgame” techniques must be used.

9.2. Path condition for spherical projective path tracking. In this subsec-

tion, we shall analyze the path condition number in the context of spherical projective

path tracking under the assumption that appropriate preconditioning techniques have

already been applied. In particular, we assume 1 ∈ [σn, σ1], where σ1 and σn are the

first and n-th singular values of Ĥx respectively.

For a fixed t ∈ [0, 1], define F (x) = Ĥ(x, t) = (f1, . . . , fn), then Equation (5) can
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be written as (
DF (x)

xH

)
· v =

(
b

0

)

for some b ∈ Cn. Here DF (x) is the Jacobian matrix of F . Still let {σ1, . . . , σn} with

σ1 > σ2 > · · · > σn > 0 be the first n singular values of DF (x). We shall compute the

path condition at this point given by the condition number of the matrix
(
DF (x)

xH

)
.

Since F (x) = (f1, . . . , fn) is a system of homogeneous polynomials and F (x) = 0,

with x = (x0, . . . , xn), by the Euler’s theorem [34, Theorem 10.2] for homogeneous

functions,

n∑
j=0

xj
∂fi
∂xj

= di · fi(x) = 0

for each i = 1, . . . , n where di = deg fi. So we have DF (x) · x = 0, or x ∈ kerDF (x).

Thus there are n right singular vectors {v1, . . . ,vn} such that {v1, . . . ,vn,x} form

an orthonormal basis of Cn+1 with respect to the complex inner product and from the

singular value decomposition of DF (x) we have

UHDF (x)
(
v1 · · · vn x

)
=


σ1 0

. . .
...

σn 0


for some unitary n× n matrix U . It follows that

(
UH

1

)(
DF (x)

xH

)(
v1 · · · vn x

)
=


σ1

. . .

σn

1

 .

Simply put, the matrix
(
DF (x)

xH

)
has singular values σ1, . . . , σn, and 1. But 1 ∈ [σn, σ1]

by assumption, so the maximum and the minimum singular value of the matrix(
DF (x)

xH

)
are still σ1 and σn respectively, and thus its condition number is

cond

(
DF (x)

xH

)
=
σ1
σn
.(8)

Namely, the condition number of the path at this point is only determined by the

singular values of DF (x) = Ĥx(x, t). We can therefore conclude that our choice of the

horizontal lift of the projective path based on (5) does not pollute the path condition

in the sense that it does not make it any worse.
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10. Numerical results: A case study of the 5-body central configuration

problem. One desirable fact of the path tracking on S2n+1 proposed in this article is

that all points in S2n+1 have coordinates with norm 1. This eliminates the problem of

having large coordinates, a common problem in affine path tracking. Figure 4 shows

the path condition along an actual affine path provided by the polyhedral homotopy

method [22] for solving the 5-body central configuration problem with the specific

formulation described in [21]. (It is a system of 20 equations, 20 unknowns, and a

total degree of 1, 787, 822, 080 = 410 · 310.) Evidently, the path condition grows rapidly

in the “middle” of the path to as high as 1018, and floating point arithmetic with

much higher precision must be used in order to track this path with confidence. Upon

closer inspection, this particular path has large components at the point where the

path condition is high. This represents a typical case when a path is close to escaping

Cn. Naturally, performing path tracking in S2n+1 solves the problem.
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Fig. 4. The norm ‖x(t)‖2 (on the left) and the path condition number (on the right) of a single

path defined by polyhedral homotopy in Cn.

Figure 5 exhibits the side-by-side comparison between the path condition along the

affine path and the path condition along the horizontal lift of the associated projective

path when the spherical projective path tracking we proposed is used. The difference

is quite clear, the bad path condition, caused largely by large coordinates is completely

eliminated: the path condition keeps a constant of roughly 102 along the entire path,

and standard double precision floating point arithmetic is more than sufficient to

handle the new path on S2n+1.

The improved path condition certainly leads to higher confidence in the end point

we obtain. A pleasant side effect is that the time required to track this particular path

is also significantly reduced as shown in Table 1.

Here we isolated one particular path to illustrate the benefit of spherical projective

path tracking. Table 2 shows the total time required to track all paths that lead

to real regular solutions (since only this type of solutions are of physical interest in
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Fig. 5. The path condition number of a single path defined by polyhedral homotopy in the affine

space Cn (solid line) and that of the horizontal lift of the associated projective path on S2n+1 (dotted

line).

Table 1

The amount of time it takes to track this particular path using different methods. These results

are obtained on a computer with Intel Xeon E5620 CPU running at 2.40GHz and 16Gb of RAM.

Path tracking method Time required for this path

Affine path tracking in Cn 2455ms

Projective path tracking on S2n+1 260ms

the context of the original problem). We can see that the spherical projective path

tracking is strongly competitive in terms of the overall time consumption.

Table 2

The amount of time it takes to track all paths that leads to regular real solutions. Those paths

that escapes Cn or converge to singular solutions in the end are ignored as they require the use of

“singular endgame” which is outside the scope of this article.

Path tracking method Time required to obtain all real solutions

Affine path tracking in Cn 16, 433s ≈ 4.5hrs

Projective path tracking on S2n+1 14, 767s ≈ 4.1hrs

11. Numerical results: a comparison to path tracking with projective

Newton’s iterations. A very similar path tracking algorithm using Projective New-

ton’s iterations alone was introduced in [14] and [27]. It was since used as the basis

for many complexity analysis related to solving polynomial systems by the homotopy

continuation method (A list of references is provided in the introduction). The analysis

of the complexity of Euler’s other similar methods can be found in earlier works such
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as [17] and [18]. In order to solve specific real-world problems, the focus of our work is

quite different: Here the predictor and corrector scheme is chosen from a consideration

of the efficiency in actual numerical computation where the exact wall-clock time taken

is of the ultimate importance.

From numerical ODE, the algorithms that use Projective Newton’s iterations

alone with no predictor, as proposed in [14] and [27], can be considered as a special

case of the predictor-corrector scheme where the predictor simply does nothing at

all. Such a predictor would be of zero-th order accuracy. It is well known in the

context of numerical ODE that Euler’s method is a first order predictor which has great

advantage over the zero-th order predictor in terms of both efficiency and reliability. To

justify the addition of the spherical Euler’s predictor with data from actual numerical

computation, we present the following examples.

In all the tables and figures in this section, “P. Newton” stands for the path

tracking method with projective Newton’s iterations alone (as introduced in [14] and

[27]) and “S.P. E/N” stands for the combination of spherical projective Euler’s method

and spherical projective Newton’s iterations (as proposed in this paper). The two

methods are each used to solve the eco14[24] system (14 equations, 14 unknowns, with

total degree of 1, 062, 882) 1000 times with randomly generated coefficients and liftings

to account for the randomized nature of the Polyhedral Homotopy method. Table

3 shows the number of steps it takes for each method. For the method that uses P.

Newton alone, a “step” is defined to be a series of P. Newton iterations (that converges

or fails to converge) at a t value. For the S.P. E/N combination, a step is simply a

single S.P. Euler’s prediction followed by a series of S.P. Newton’s iterations (that

converges or fails to converge). Notice that P. Newton method uses 7.61 times more

steps than S.P. E/N method on average. Moreover, P. Newton method performs less

consistently in the sense that the standard deviation is more than 100 times greater

than the standard deviation obtained using the S.P. E/N method.

Table 3

The minimum, maximum, and mean number of steps it takes to track all solutions paths for the

eco14[24] system using the two different methods (1000 runs each, which represent 1000 different set

of paths). Last row shows the standard deviation of the two samples.

P. Newton S.P. E/N Ratio

Min. number of steps 2,121,996.00 388,424.00 5.46

Max. number of steps 67,144,909.00 525,088.00 127.87

Mean number of steps 3,538,142.09 464,697.71 7.61

Std. deviation 2,082,192.75 19,504.55 106.75

Even though a spherical projective Euler’s predictor introduces additional costs

over the method that uses projective Newton iterations alone, such a first order
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predictor offers much better predictions and resulting in a much lower overall running

time. Table 4 shows the actual time, in seconds, spent on tracking homotopy paths

using each method. The average time consumption for P. Newton method is 5.974

times that of the S.P. E/N method, and the standard deviation for P. Newton method

is 71.206 times that of the S.P. E/N method. In other words, as far as this particular

system is concerned, the 1000 random runs shows that the S.P. E/N method is more

efficient and far more consistent.

Table 4

The minimum, maximum, and mean time it takes to track all solutions paths for the eco14[24]

system using the two methods. Data are collect over 1000 runs using each method (1000 runs each,

which represent 1000 different set of paths). Last row shows the standard deviation of the two

samples.

P. Newton S.P. E/N Ratio

Min. time 103.087s 22.654s 4.551

Max. time 2539.260s 31.422s 80.812

Mean time 160.561s 26.879s 5.974

Std. deviation 78.111s 1.096s 71.206

The difference in consistency is even more visible using the histograms as shown in

Figure 6. While the running time, over 1000 different runs, for the S.P. E/N method

spans a very narrow range (22 to 32 seconds), the histogram for the P. Newton method

shows a “long tail” and spans a much wider range (100 to more than 2500 seconds).
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Fig. 6. A comparison between the histograms representing the distribution of the time consumed

to track all paths for the eco14[24] system using P. Newton method alone (left) and the S.P. E/N

method(right). The timing data are collect over 1000 runs using each method. The size of the

rectangles represents the frequency within the 1000 runs. E.g., the tallest rectangle in the histogram

on the right represent that over 300 runs using S.P. E/N method consumed between 26 and 27

seconds.

The same difference can be observed in solving a list of polynomial systems. Table

5 shows the difference in running time between the two methods when applied to
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some systems in the standard test suites. The authors thus believe it is reasonable to

conclude that under the circumstance normally encountered in numerical computation,

the S.P. E/N method has a strong advantage over the method that uses P. Newton’s

iterations alone in terms of the actual running time. In fact, the predictor-corrector

scheme is the standard path tracking method in almost all of the software packages

for solving polynomial system based on homotopy continuation methods, including

Bertini[4], PHoM[16], Hom4PS-2.0[20], and PHCpack[33], to list a few.

Table 5

The mean running time for tracking all solutions paths for different system using the two

different methods: the P. Newton method (second column) and the S.P. E/N method proposed in our

paper (third column). The last column represent the speedup ratio of the S.P. E/N method over the

use of P. Newton method. Data are, again, collected over 1000 runs for each method.

P. Newton S.P. E/N Speedup ratio

cyclic5[13] 0.100s 0.049s 2.041

cyclic7[13] 4.240s 1.432s 2.961

eco11[24] 5.606s 1.494s 3.751

eco12[24] 19.529s 3.986s 4.899

eco13[24] 44.256s 9.496s 4.661

eco14[24] 160.561s 26.879s 5.974

eco15[24] 327.453s 65.227s 5.020

Appendices.

A. The horizontal tangent space formula. This section outlines certain well

known facts related to the Riemannian structure on CPn and proves Proposition 2

stated in Section 6.

Cm is naturally identified with R2m via (z1, . . . , zm) 7→ (<z1,=z1, . . . ,<zm,=zm),

where for a complex number z, <z and =z are the real and imaginary parts of z

respectively. Then the scalar multiplication to vectors in Cm by a complex number

a+ bi, under such an identification, can be viewed as the linear transformation of R2m

given by the 2m× 2m matrix

a −b
b a

. . .

a −b
b a


.

In the context of complex geometry, it can be immediately recognized that this is just

the standard complex structure on R2m.
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One such scalar multiplication is of special interest to us: the multiplication by a

complex number eiθ = cos θ + sin θ i on the unit circle S1 = {u ∈ C : |u| = 1} of C,

which preserves length. As a linear transformation on R2m, the same notation

eiθ =



cos θ − sin θ

sin θ cos θ

. . .

cos θ − sin θ

sin θ cos θ


shall be used to represent the block diagonal matrix on the right hand side, which is

clearly orthogonal. One can easily verify that familiar statements (eiθ)−1 = ei(−θ),

eiθ1 · eiθ2 = ei(θ1+θ2), and d
dθ e

iθv = ieiθv still hold true as statements of linear

transformations.

For u,v ∈ R2n, the notation 〈u,v〉R = u>v always denotes the standard dot

product in the Euclidean space. We will use the same symbols u and v for the two

corresponding vectors in Cn under the identification mentioned above, and the notation

〈u,v〉C := uHv for the complex inner product, where uH is the conjugate transpose

of the complex vector u ∈ Cn. There are other possible definitions for the complex

inner product. This one is chosen so that the two inner products have an obvious

connection:

〈u,v〉R = <〈u,v〉C and 〈iu,v〉R = =〈u,v〉C.(9)

It is also a convenient fact that the length of a vector ‖u‖2 =
√
〈u,u〉R =

√
〈u,u〉C

regardless which inner product is used.

Section 4 has stated the well known construction in which CPn is realized as

the quotient manifold S2n+1/S1. It also carries a natural smooth structure and

Riemannian structure given by the Fubini-Study metric such that the quotient map

π : S2n+1 → CPn ≈ S2n+1/S1 is a Riemannian submersion. As a submanifold of

Cn+1 ≈ R2n+2, S2n+1 inherits a natural Riemannian metric gS2n+1 , which is a

smooth assignment of inner products in the tangent bundle TS2n+1. Or more formally,

gS2n+1 is a 2-tensor field that is symmetric and positive definite simply given by

gS2n+1(u,v) = 〈u,v〉R

for u,v ∈ TxS2n+1 at any x ∈ S2n+1 using the standard coordinates of the ambient

space TxR2n+2 ≈ R2n+2. It was stated earlier that with this metric the tangent space

at x can be decomposed into

TxS
2n+1 = Vx ⊕Hx

where Vx = kerπ∗ and

Hx = {h ∈ TxS2n+1 | gS2n+1(h,v) = 0, ∀v ∈ Vx}.
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That is, we can decompose TxS
2n+1 into the direct sum of two subspaces that are

orthogonal with respect to the inner product given by gS2n+1 at x. The subspace Hx

is then described by the following formula, as listed in Section 6:

Proposition (Proposition 2 of Section 6) Via the isomorphism TxCn+1 ∼= Cn+1,

Hx is given by the subspace

Hx = {v ∈ Cn+1 | 〈x,v〉C = xHv = 0}.

Proof. At x, the tangent space TxS
2n+1 of S2n+1, as an embedded submanifold

of R2n+2, can be identified with the linear subspace {x}⊥ ⊆ TxR2n+2 ∼= R2n+2. The

space Vx is simply the tangent space Tx[x] of the orbit of x under the action of S1. It

is clear that near x, the one (real) dimensional submanifold [x] is parametrized by

γ(θ) = eiθx with γ(0) = x. So

γ̇(0) = iei0x = ix .

As a vector in TxR2n+2, it is a generator of the one dimensional vector space Tx[x].

Thus

Vx = Tx[x] = span{ix} and TxS
2n+1 = {x}⊥.

Since Hx is defined to be the orthogonal compliment of Vx in TxS
2n+1. So it is simply

{ix}⊥ ∩ {x}⊥ in TxR2n+2 ∼= R2n+2, i.e., it is the set of vector v such that

〈ix,v〉R = 0

〈x,v〉R = 0

which is equivalent to the complex equation 〈x,v〉C = 0 based on the observation from

Equation (9). Therefore the horizontal space can be characterized as

Hx = {v ∈ TxR2n+2 : 〈x,v〉C = 0}.

B. The distance formula for S2n+1. In the Newton’s corrector, the distance

between two points on S2n+1 is used as an important criterion for the convergence

test. In this section we shall state the distance formula for two points on S2n+1.

It is clear that the distance between two poins x = (a, b) and x′ = (1, 0) on the

unit circle S1 ⊂ R2 must be the length of the shorter arch between the two points on

the unit circle. This length is given by the angle between x = (a, b) and the horizontal

axis on which x′ lies:

dS1(x,x′) = cos−1(a) = cos−1

(1

0

)>(
a

b

) = cos−1(〈x,x′〉R).
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The same formula works in general for S2n+1. For two distinct points x,x′ ∈ S2n+1 ⊂
Cn+1 ≈ R2n+2, there exists a unique 2-dimensional linear subspace of R2n+2 that

contains both x and x′. This subspace intersects S2n+1 on a circle, the great circle

through x and x′. It is intuitively clear that the distance between them must be the

length of the shorter arc joining the two on the great circle (geodesic) that passes

through both of them. An indirect proof of this fact can be found in [19, Proposition

5.13]. There exists an orthogonal change of coordinates after which the two points

x and x′ together with the great circle passing through them lie flat in R2 ⊂ R2n+2.

Indeed, this change of coordinates is given explicitly by the QR decomposition: there

exists a (2n+ 2)× (2n+ 2) real orthogonal matrix Q such that

Q
(
x x′

)
=



1 a

0 b

0 0
...

...

0 0


for some a, b ∈ R. So the orthogonal transformation Q maps the great circle through

those two points to the unit circle S1 ⊂ R2 ⊂ R2n+2, and we can thus compute the

distance as we did in the previous case. Since Q, being orthogonal, preserves dot

product, it follows that

dS2n+1(x,x′) = cos−1(a) = cos−1((Qx)>(Qx′)) = cos−1(〈x,x′〉R).

In this case, the distance is still given by the arccosine of the real inner product of the

two points as vectors in R2n+2.

C. Properties of horizontal lift. In this section we will restate and prove the

basic properties of the horizontal lift of a given projective path and a starting point.

Proposition (Proposition 1 of Section 5) Fix the projective path γ̂ ⊂ CPn with

its smooth parametrization x̂ : [0, 1] → CPn and a starting point x0 ∈ π−1(x̂(0)).

Let Γ be the set of all smoothly parametrized curves x : [0, 1] → S2n+1 such that

π ◦ x = x̂ and x(0) = x0. Also let xH be the unique horizontal lift of γ̂. Then

i. ‖ẋH(t)‖ ≤ ‖ẋ(t)‖ for all x(t) ∈ Γ.

ii. For any x(t) ∈ Γ and t0 ∈ (0, 1), there is a sufficiently small ε ∈ R+ such that∫ t0+ε
t0

‖ẋH(t)‖dt ≤
∫ t0+ε
t0

‖ẋ(t)‖dt.
iii.

∫ 1

0
‖ẋH(t)‖dt =

∫ 1

0
‖ ˙̂x(t)‖dt.

Proof.

i. Fix any t ∈ (0, 1) and x(t) ∈ Γ. By the decomposition Tx(t)S
2n+1 = Hx(t)⊕Vx(t),

ẋ(t) can be written uniquely as h + v with h ∈ Hx(t) and v ∈ Vx(t). Since

π ◦ x = π ◦ xH = x̂ by assumption, thus π∗ẋ(t) = π∗ẋ
H(t) = ˙̂x(t). But xH is

horizontal, so

‖ẋH(t)‖2 = ‖h‖2 ≤ ‖h‖2 + ‖v‖2 = ‖h + v‖2 = ‖ẋ(t)‖2.



218 TIANRAN CHEN AND TIEN-YIEN LI

ii. This follows immediately from the previous part.

iii. Since xH(t) is horizontal and π∗ acts as an isometry on the horizontal space,∫ 1

0

‖ẋH(t)‖dt =

∫ 1

0

√
gS2n+1(ẋH(t), ẋH(t))dt

=

∫ 1

0

√
gCPn(π∗(ẋ

H(t)), π∗(ẋ
H(t)))dt

=

∫ 1

0

√
gCPn( ˙̂x(t), ˙̂x)dt

=

∫ 1

0

‖ ˙̂x(t)‖dt.
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[13] G. Björck and R. Fröberg. A faster way to count the solutions of inhomogeneous systems of

algebraic equations, with applications to cyclic-n-roots. Journal of Symbolic Computation,

12:3(1991), pp. 329–336.

[14] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation. Springer-

Verlag, 1998.

[15] J.-P. Dedieu, G. Malajovich, and M. Shub. Adaptive step-size selection for homotopy

methods to solve polynomial equations. IMA Journal of Numerical Analysis, 33:1(2013), pp.

1–29.



SPHERICAL PROJECTIVE PATH TRACKING 219

[16] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and T. Mizutani. PHoM–a polyhedral

homotopy continuation method for polynomial systems. Computing, 73:1(2004), pp. 57–77.

[17] M.-H. Kim. Computational complexity of the Euler type algorithms for the roots of complex

polynomials. PhD thesis, City University of New York Graduate Center, 1985.

[18] M.-H. Kim. On approximate zeros and root finding algorithms for a complex polynomial.

Mathematics of Computation, 51:184(1988), pp. 707–719.

[19] J. M. Lee. Riemannian manifolds: An introduction to curvature, volume 176. Springer-Verlag,

1997.

[20] T. L. Lee, T. Y. Li, and C. H. Tsai. HOM4PS-2.0: a software package for solving polynomial

systems by the polyhedral homotopy continuation method. Computing, 83:2(2008), pp.

109–133.

[21] T. L. Lee and M. Santoprete. Central configurations of the five-body problem with equal

masses. Celestial Mechanics and Dynamical Astronomy, 104:4(2009), pp. 369–381.

[22] T. Y. Li. Numerical solution of polynomial systems by homotopy continuation methods. In: P. G.

Ciarlet, editor, Handbook of Numerical Analysis, volume 11, pages 209–304. North-Holland,

2003.

[23] A. P. Morgan. A transformation to avoid solutions at infinity for polynomial systems. Applied

mathematics and computation, 18:1(1986), pp. 77–86.

[24] A. P. Morgan. Solving polynomial systems using continuation for engineering and scientific

problems, volume 57 of Classics in Applied Mathematics. Society for Industrial and Applied

Mathematics, 2009.
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