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On the Network Topology Dependent Solution
Count of the Algebraic Load Flow Equations

Tianran Chen∗ †and Dhagash Mehta‡ §

Abstract—Active research activity in power systems areas has
focused on developing computational methods to solve load flow
equations where a key question is the maximum number of
solutions. Though several upper bounds exist, recent studies
have hinted that much sharper upper bounds that depend on
the topology of underlying power networks may exist. This
paper provides a significant refinement of these observations. We
also develop a geometric construction called adjacency polytope
which accurately captures the topology of a power network
and is immensely useful in the computation of the solution
bound. Finally we highlight the significant implications of the
development of such solution bounds in numerically solving load
flow equations.

I. INTRODUCTION

Engineers are regularly required to perform power flow
computations for designing, operating, and controlling power
systems [1]. In this, a key mathematical problem is to solve a
system of multivariate nonlinear equations known as the load
flow equations. In general, load flow equations may have more
than one solutions [2]. There are quite a few existing methods
for finding one or many solutions [3]–[29] (see [30] for a
recent review). Out of the few methods that guarantee to find
all load flow solutions, i.e., the interval based approach [19],
Gröbner bases technique [20]–[23] and the numerical polyno-
mial homotopy continuation (NPHC) method [24]–[29], the
NPHC method appears most promising in scalability with
increasing system sizes in that it has already found all load
flow solutions of up to IEEE 14-bus systems [26] (and 18
oscillators case for the Kuramoto model [29]) and is inherently
parallel: formulating load flow equations as systems of poly-
nomial equations, the NPHC method, rooted from complex
algebraic geometry, finds all isolated complex solutions which
obviously include all isolated real solutions. NPHC solves
the algebraic versions of load flow equations by constructing
smooth paths connecting each of its complex solutions to
a corresponding prescribed starting point. Then numerical
continuation methods can be applied to trace the paths from
the known starting points to reach all the complex solutions.
In this context the a priory knowledge of an upper bound on
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the number of solutions is crucially important as it determines
the number of paths one must construct. Consequently, sharper
bounds would directly lead to more efficient NPHC methods
that use less paths. Moreover, as we shall illustrate, the
starting points of the paths are also produced as byproducts
of the process for computing upper bounds on the number of
solutions. While several general upper bounds exist [31], [32],
several studies [26], [33], [34] have hinted that much sharper
upper bounds that depend on the topology of the underlying
power networks may exist. The main goal of this paper is
to establish a significant refinement to these observations
using an alternative polynomial formulation of the load flow
equations that more naturally bridge the network topology and
the theory of Bernshtein-Kushnirenko-Khovanskii bound [35].
This paper is organized as follows: §II formulates algebraic
load flow equations and reviews existing results. §III-A de-
scribes the tight bound on the number of isolated complex
solutions for algebraic load flow equations which will be called
the Conjugate Coordinate Bernshtein-Kushnirenko-Khovanskii
bound. §III-B propose a novel geometric formulation for the
upper bound called adjacency polytope bound. §III-C discusses
the computational issues, and §III-D highlights the significant
implications of the development of these solution bounds
in homotopy methods for solving load flow equations. §IV
compares the bounds we will develop with previously known
bounds. Necessary but well known concepts from convex
geometry and complex algebraic geometry are included in the
Appendix for completeness.

II. ALGEBRAIC FORMULATION

In this paper, we focus on the mathematical abstraction of
a power network which is captured by a graph G = (B,E)
and a complex matrix Y = (Yij). Here B is the set of nodes
representing “buses”, E is the set of edges (a.k.a. branches)
representing the connections among buses, and the matrix Y is
the nodal admittance matrix which assigns a nonzero complex
value Yij (mutual admittances) to each edge (i, j) ∈ E. For
any (i, j) /∈ E, Yij = Yji = 0. Here, Y is not assumed to be
symmetric, but we require Yij and Yji to be both nonzero if
(i, j) ∈ E. As a convention, we further require all nodes to
be connected with itself to reflect the nonzero diagonal entries
Yii known as self-admittances. For brevity, we define n to be
the number of non-reference buses (i.e., |B| = n + 1) and
label the nodes by 0, 1, 2, . . . , n. Their complex voltages will
be denoted by v0, v1, . . . , vn. Here we fix node 0 to be the
designated reference bus for which the voltage v0 is fixed to
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a nonzero real constant. In this setup, the load flow equation
takes the form of

Si =

n∑
j=0

Y ∗ijviv
∗
j for i = 1, . . . , n, (1)

which is a system of n equations in the n variables v1, . . . , vn
since v0, corresponding to the reference bus, is a constant.
Here v∗i and Y ∗ij denotes the complex conjugates of vi and Yij
respectively, and Si ∈ C are the injected power. The equa-
tions (1) may represent either a transmission or distribution
network, with PQ buses. It is the network topology along with
other features that can distinguish these cases: a mesh topology
would usually correspond to transmission networks, whereas
radial topology would correspond to distribution networks.

A solution to (1) is said to be isolated if it is the only
solution in a sufficiently small neighborhood. Solutions with
some vk = 0 are said to be deficient. By an application of
Sard’s Theorem [24], it can be verified that under a generic
perturbation of S1, . . . , Sn, the system (1) has no deficient
solutions (deficient solutions may appear for specific choices
of S1, . . . , Sn). We therefore focus only on the non-deficient
solutions. The problem central to this paper is counting the
isolated non-deficient load flow solutions:

Problem Statement 1. For a power network, what is the
maximum number of isolated non-deficient solutions to (1)?

Following the fruitful algebraic approach taken by works
such as [31], [32], we “embed” this problem into a more
general algebraic root counting problem: We consider a poly-
nomial system whose solution set captures all the solutions of
the above (non-algebraic) system by introducing new variables

ui = v∗i for each i = 0, . . . , n. (2)

Substituting them into (1), we obtain algebraic equations

Si =

n∑
j=0

Y ∗ij vi uj for i = 1, . . . , n. (3)

This is a system of n equations in 2n variables. However, a
“square” system where the number of variables and equations
match is more convenient from an algebraic point of view. We
therefore extract n hidden equations by taking the complex
conjugates of both sides of each of the above and obtain

S∗i =

n∑
j=0

(Y ∗ij vi uj)
∗

=

n∑
j=0

Yij ui vj for i = 1, . . . , n. (4)

We now sever the tie between u = (u1, . . . , un) and v =
(v1, . . . , vn) and consider them to be variables independent
from one another, i.e., we ignore (2). Then (3) and (4) combine
into a system of 2n polynomial equations in the 2n variables:

PG,Y,S(v,u) =



∑n
k=0 Y

∗
1k v1uk − S1 = 0

...∑n
k=0 Y

∗
nkvnuk − Sn = 0∑n

k=0 Y1k u1vk − S∗1 = 0
...∑n

k=0 Ynk unvk − S∗n = 0.

(5)

Here, the values of v0 and u0 are fixed, as they correspond
to the reference node and are hence constants in the above
system. For brevity, this system will be referred to as the
algebraic load flow equations. This formulation is essen-
tially the algebraic way of rewriting the load flow equations
in the “complex conjugate coordinate” which is a common
technique in the theory of several complex variables known
as polarization [36]. It first appeared in [32] to the best of our
knowledge. A similar polynomial formulation for a special
case was also used in earlier works [31], [37]. It is also
employed in the Holomorphic Embedding method [38]. Other
polynomial formulations of the load flow equations have also
been used (see, e.g., [26]–[28], [39]–[41]).

It is worth noting that in PG,Y,S , the topology of the
underlying power network is encoded in the set of monomials
while entries of Y and S appear as the coefficients. Devel-
oping a solution count that exploits network topology via the
monomial structure is the main goal of this paper.

Clearly, for every solution v of the original (non-algebraic)
system (1), PG,Y,S(v,v∗) = 0. That is, PG,Y,S = 0 captures
all solutions of the original load flow system. In the following,
we focus on the algebraic root counting problem:

Problem Statement 2. For a power network with topology
given by a graph G, what is the maximum number of isolated
roots of PG,Y,S in (C \ {0})2n for all choices of Y and S?

Here, the “maximum number” means the lowest upper
bound that is also attainable and shall be distinguished from
a mere “upper bound”. Of course, the existence of such a
“maximum number” is not a priorily guaranteed. One of the
goals of this paper is to establish the validity of the above
question. Clearly, any answer to Problem 2 provides an upper
bound for the answer to Problem 1. It is possible for the
algebraic formulation (5) to introduce extraneous solutions (for
which u 6= v∗). This is a reasonable trade-off — with the
formulation (5), we get a much easier algebraic system at the
expense of potentially introducing extraneous solutions. As a
direct consequence of the inherit symmetry in the polarization
technique, extraneous solutions must appear in conjugate pairs,
(v,u) and (u∗,v∗), as long as v0 ∈ R [36], [39].

Various upper bounds for Problem 2 have been proposed in
the past (see [34] for a recent review). The classical Bézout
number (or CB number) provides a simple upper bound.
It is a basic fact in algebraic geometry that the number of
isolated complex solutions of a polynomial system is bounded
above by the CB number. Therefore, for a power network of
n (non-reference) buses, and one reference bus, the CB bound
is 22n, since there are 2n equations in (5) each of degree 2. A
much tighter upper bound on the number of isolated complex
solutions,

(
2n
n

)
, was derived for the special case of completely

interconnected lossless networks by Baillieul and Byrne [31],
and the same bound for the general case is established by
Li, Sauer, and Yorke [32] (see [39] for a recent alternative
derivation of this bound). We shall refer to this bound as
the Baillieul-Byrne-Li-Sauer-Yorke bound, or simply BBLSY
bound. However, neither of these bounds exploit the network
topology of a given power system. The link between network
topology and complex solution count was first hinted in [33],
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however, a concrete and computable answer remains elusive.
In a recent study [34], with extensive numerical experiments

via the NPHC methods, it was observed that the number of
isolated complex solutions is generally significantly lower than
both the CB and BBLSY bound for sparsely connected graphs.
Based on these observations, it was anticipated that the key
to exploiting the network structure of the power system may
be to exploit the underlying topology of the power system. In
the present work, we show that this maximum number exists
and it is given by the Bernshtein-Kushnirenko-Khovanskii (or
BKK) bound. We then develop a novel approximation of
this maximum number, to be called the “adjacency polytope”
which has tremendous computational advantage yet is exact
in many concrete cases as we shall show.

III. THE MAXIMUM NUMBER OF SOLUTIONS

A. The conjugate coordinate BKK bound

Problem 2 is a special case of the root counting problem
for polynomial systems which is an important problem in
algebraic geometry that has a wide range of applications [24],
[42], [43]. Two basic root counts are provided by the CB
and BBLSY bounds described above. One common weakness
of the two is that they only utilize the rather incomplete
information about the polynomial system — the degree (or
“multi-degree”). In the current context, this means that they
do not take into consideration the topology of the underlying
network. Following up the observations in Ref. [34] we
refine these bounds using the theory of BKK bound [35]
which accurately captures the network topology of the power
systems. Recall that the topological information is encoded
in “monomial structure” of (5), i.e., the set of monomials
that actually appear. Intuitively, the theory of BKK bound
provides a root count in terms of a volume measurement for
the geometric shapes spanned by the monomials:

Theorem 1 (Bershtein [35]). Consider the algebraic load flow
system of 2n polynomial equations (5) in 2n variables.
(A) The number of isolated solutions the system has in (C \
{0})2n is bounded above by the mixed volume of the
Newton polytopes for the 2n equations.

(B) Without enforcing the conjugate relations among the
coefficients, there is an open and dense set of coefficients
for which all solutions of the system (5) in (C \ {0})2n
are isolated and the total number is exactly the upper
bound given in (A).

In this, the Newton polytopes are the smallest convex sets
that contain the exponent vectors in each equation in (5),
and mixed volume is a generalization of volume to a list of
geometric bodies that measures the sizes as well as relative
orientation of the bodies. The technical definition is included
in the Appendix. Here, it is sufficient to take the following
interpretation: Part (A) establishes a computable upper bound
for the number of isolated solutions that depends on the
geometric configuration of the monomial structure (and hence
the network topology), and part (B) shows this upper bound
is generically exact. The original proof was given in [35].

An alternative proof that gives rise to the development of
polyhedral homotopy was given in [44]. More detail can be
found in standard references such as [25], [45], [46]. In [47],
the root count in the above theorem was nicknamed the BKK
bound after the works of Bernshtein [35], Kushnirenko [48],
and Khovanskii [49]. In general, it provides a much tighter
bound on the number of isolated zeros of a polynomial system
compared to variants of Bézout bounds. More importantly, in
the context of load flow equations, the topology of the under-
lying power network is encoded in the monomial structure,
the BKK bound is therefore topology dependent.

It is important to note that the “generic exactness” expressed
in part (B) of the above theorem only holds when one ignores
the tie between Yij and Y ∗ij as well that between Si and S∗i .
That is, one must allow Yij and Y ∗ij to vary independently in
interpreting the above theorem. We shall now bring back the
restriction that all the (Yij , Y

∗
ij) and (Si, S

∗
i ) must be conjugate

pairs and investigate the exactness of the BKK bound under
these restrictions. We shall fix the sparsity pattern of the Y
matrix but allow its entries (and that of S) to vary among the
set of nonzero complex numbers. In the following, we shall
establish that the BKK bound is always exact for some choice
of Y and S. In other words, we have the following assertions:

Theorem 2. Given a graph G, there exist a matrix Y and
a vector S for which the number of isolated solutions of the
corresponding algebraic load flow equation PG,Y,S = 0 in
(C \ {0})2n is exactly the BKK bound given in Theorem 1.

Proof. For convenience, let Z = (Z1, . . . , Z`) collect all the
nonzero entries of Yij and Si. That is, Z contains all the
nonzero coefficients in (5). Let D be the discriminant provide
by part (B) of Theorem 1. We simply have to show that there
exists a choice of Z ∈ (C \ {0})` such that the discriminant
D(Z,Z∗) 6= 0. Suppose no such choice of Z exist, then
D(Z,Z∗) = 0 for all Z ∈ (C \ {0})`. By Lemma 1 in the
Appendix, D(Z,W ) = 0 for all (Z,W ) ∈ (C \ {0})2`. This
means D must be a zero polynomial, which is a contradiction.
Therefore, we must conclude that there is always a choice of
Z (and hence Y and S) such that D(Z,Z∗) 6= 0.

Remark 1. From the theory of complex variables, an immedi-
ate consequence of the above theorem is that the BKK bound
must be exact for almost all choices of Y and S. That is, if
Y and S are chosen at random (among all complex matrices
and vectors of the appropriate sizes) then the probability of
picking one for which the BKK bound fails to be exact is zero.

Alternatively, the generic exactness of BKK bound can also be
interpreted in terms of closeness — every choice of (Y, S) is
arbitrarily close to some choice for which this bound is exact:

Theorem 3. Given a graph G, a matrix Y , vector S, and a
threshold ε > 0, there exists a pair of matrix Ỹ and vector S̃
with Ỹ having the same sparsity pattern as Y and S such that
‖(Y, S)− (Ỹ , S̃)‖ < ε and the number of isolated solutions in
(C \ {0})2n of the algebraic load flow equation PG,Ỹ ,S̃ = 0
in (5) is exactly the BKK bound given in Theorem 1.

Proof. As in the previous proof, let Z = (Z1, . . . , Z`) collect
all the nonzero entries in Y and S. Suppose there exists an
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open ball Ω of radius ε and centered at (Y, S) such that the
discriminant D(Z,Z∗) = 0 for all Z ∈ Ω. Then by Lemma 1,
D(Z,W ) = 0 for all (Z,W ) ∈ Ω × Ω∗ where Ω∗ = {W |
W ∗ ∈ Ω}. That is, D is identically zero on an open domain.
A contradiction. Therefore, we must conclude that there must
be some Z = (Ỹ , S̃) ∈ Ω for which D(Z,Z∗) 6= 0, i.e., the
BKK bound is exact for PG,Ỹ ,S̃ = 0.

Note that the BKK bound given in Theorem 1 depends
on the special algebraic formulation given in (5) based on
the “conjugate coordinate” (using vi’s and v∗i ’s as variables).
When the theory of BKK bound is applied to other algebraic
formulations, the actual bound may be different. Moreover,
Theorem 2 and 3 may not hold for other formulations. For
instance, if (1) is transformed into a polynomial system by
using the real and imaginary parts of vi’s as variables (a
common practice in power-flow studies as adopted in [26]),
then the corresponding BKK bound may not be exact for any
choice of Y and S. Therefore, to distinguish the BKK bound
given in Theorem 1 from similar BKK bound derived from
other formulations, we shall call it the Conjugate Coordinate
BKK bound (or CCBKK bound).

B. Solution bound via adjacency polytope

We now develop an approximation of the CCBKK bound
that can be analyzed and computed more easily. First, we
encode the given graph into a polytope (a geometrical object
with flat sides). The definition requires the following notations:
Let e0 := 0 ∈ Rn, and let ei ∈ Rn for i = 1, . . . , n
denote the vector that has an entry 1 on the i-th position and
zero elsewhere. (ei, ej) ∈ R2n is simply the concatenation of
ei, ej ∈ Rn. Finally, “conv” denotes the convex hull operator
which produces the smallest convex set containing a given set.

Definition 1. Given an undirected graph G = (B,E), let

ΓG :=
⋃

(i,j)∈E

{(ei, ej)} ⊂ R2n.

With this, we define the symmetric adjacency polytope to be

∇G := conv(ΓG ∪ {0}).

∇G is a geometric encoding of the power network connec-
tivity with connections manifested as points.

Remark 2. It is clear that equations in (5) always contain
many common monomials. Indeed, if (i, j) is an edge, then
viuj appear in both the i-th and the (n+ j)-th equation. That
is, the monomial structure of (5) has certain level of built-in
redundancy. Such redundancy is removed in the construction
of ∇G which involves the union of the set of points repre-
senting the edges. In this union common monomials in (5)
will therefore coalesce into the same point. Consequently, the
polytope ∇G, in a sense, contains much less information than
the monomial structure in (5). Therefore the encoding ∇G is
advantageous from a computational point of view.

Theorem 4. The number of isolated solutions the algebraic
load flow system (5) has in (C \ {0})2n is bounded above by

µG := NVol2n(∇G)

which will be called adjacency polytope bound (AP bound).

Here “NVol2n” denotes the normalized volume in R2n, and
it is defined so that the standard “corner simplex” (the corner
of a unit hypercube) has volume 1. This definition would
guarantee µG is always an integer.

Proof. For a nonsingular 2n×2n matrix M , we can form the
new system M · PG,Y,S as the formal matrix-vector product
where PG,Y,S is considered as a column vector. This technique
is known as randomization. Clearly, M · PG,Y,S(v,u) = 0
if and only if PG,Y,S(v,u) = 0 and the number of isolated
solutions (in (C\{0})2n) remains the same under this transfor-
mation. It is easy to verify that the support of the randomized
system M · PG,Y,S is unmixed of type 2n, and the Newton
polytope is precisely the symmetric adjacency polytope ∇G

defined in Definition 1. Then by the unmixed form of Bern-
shtein’s Theorem [44], the BKK bound of this randomized
system is precisely the normalized volume NVol2n(∇G).

Since the CCBKK bound is already shown to be tight (at-
tainable) in Theorem 2 while the AP bound is only shown
to be an upper bound, we can immediately conclude that the
CCBKK bound is never greater than the AP bound. Moreover,
since the initial submission of this paper, the theory of AP
bound has been further developed in works such as [50]
where the AP bound is shown to be always exactly equal to
the CCBKK bound under the mild condition that the power
injection S1, . . . , Sn are all nonzero:

Proposition 1 (Proposition 3 in [50]). Given a graph
G = (B,E) and nonzero complex constants S1, . . . , Sn, the
CCBKK bound and the AP bound for the induced algebraic
load flow system (5) are identical.

Example 1. Consider the simple path graph G =
({0, 1, 2, 3}, E) of 4 nodes where each node i is connected
to the next node i+ 1. Recall that we also require each node
to have a loop to itself, so the edges in the graph are

E = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)}.

By Definition 1, the points in ΓG are therefore (e0, e0),
(e0, e1), (e1, e0), (e1, e1), (e1, e2), (e2, e1), (e2, e2),
(e2, e3), (e3, e2), and (e3, e3). With programs for computing
volume of convex polytopes to be listed in § III-C, we can
easily compute that the AP bound is µG = NVol6(∇G) =
NVol6(conv ΓG) = 8 whereas the BBLSY bound is

(
6
3

)
= 20.

That is, using the AP bound, we can show that the algebraic
load flow equations (5) for such a path graph has at most 8
isolated non-deficient complex solutions, and it is significantly
tighter than the existing BBLSY bound.

Though the present contribution focus mainly on the root
counting problem for the algebraic load flow equations (Prob-
lem 2), we shall note that it is possible to have a gap between
the root counts for Problem 2 and Problem 1. For instance,
using a randomly chosen symmetric Y matrix and S1, S2, S3

that sum to zero, we form the algebraic load flow equations
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(0.91 − 0.32i)v1u1 + (1.78 − 1.63i)v10.87 + (0.36 − 1.33i)v1u2 = 1.06 + 1.28i

(1.90 − 1.19i)v2u2 + (0.36 − 1.33i)v2u1 + (1.69 − 0.55i)v2u3 = −0.51 − 0.62i

(0.44 − 0.64i)v3u3 + (1.69 − 0.55i)v3u2 = −0.55 − 0.66i

(0.91 + 0.32i)u1v1 + (1.78 + 1.63i)u10.87 + (0.36 + 1.33i)u1v2 = 1.06 − 1.28i

(1.90 + 1.19i)u2v2 + (0.36 + 1.33i)u2v1 + (1.69 + 0.55i)u2v3 = −0.51 + 0.62i

(0.44 + 0.64i)u3v3 + (1.69 + 0.55i)u3v2 = −0.55 + 0.66i

induced by the path graph containing 4 nodes. Using numerical
solvers for algebraic systems (e.g. Hom4PS-3 [51]), it is
easy to verify that this system has only 4 solutions for which
u∗ = v. These, of course, correspond to the 4 solutions
to the original (non-algebraic) system (1). In addition, two
conjugate pairs of extraneous solutions (for which u 6= v∗)
are introduced by the algebraic formulation using conjugate
coordinate system (5). The number of extraneous solutions
greatly depends on the choice of the coefficients.

It is quite easy to understand how new connection in a power
network will change the AP bound: Since the AP bound is
formulated in terms of the volume of a polytope which is
nondecreasing (i.e., it will either increase or remain unchanged
when new points are added), this upper bound must also be
nondecreasing when new connections are introduced:

Theorem 5. For a graph G = (B,E) and two of its nodes
i and j that are not directly connected (i.e., (i, j) /∈ E), let
G′ = (B,E∪{(i, j)}) be the new graph constructed by adding
the edge between i and j to G. Then µG ≤ µG′ . Moreover, if
{(ei, ej), (ej , ei)} ⊂ ∇G then µG = µG′ .

Proof. Recall that each edge in a graph contributes certain
points (which may or may not be vertices) in the construction
of the symmetric adjacency polytope. Since the edges of G
is a subset of the edges of G′, we can see that ∇G ⊆ ∇G′

with the equality hold precisely when the points contributed
by (i, j) are already inside ∇G. With these observations in
mind, both parts of this theorem are direct implications of
normalized volume being nondecreasing.

Based on this observation, it can be shown that the AP
bound is never more than the BBLSY bound. This is essen-
tially our alternative proof of the BBLSY bound:

Theorem 6. For a graph G = (B,E), µG ≤
(
2(|B|−1)
|B|−1

)
Proof. Fixing the set of buses, Theorem 5 states that the AP
bound is nondecreasing as new edges are added to the graph.
Consequently, the AP bound for any network constructed from
this set of buses is bounded above by the AP bound for the
graph with most edges, that is, a complete graph. It is easy
to verify that for a complete graph G = (B,E) (with loops),
∇G ⊆ (convA) + (convB) where A = {e0, e1, e2, . . . en},
B = {e0, en+1, en+2, . . . e2n}, and (convA) + (convB)
denotes the Minkowski sum of the two polytopes (convA)
and (convB). Note that both (convA) and (convB) are n-

dimensional. Then by multi-linearity of mixed volume,

NVol((convA) + (convB))

=

2n∑
k=0

(
2n

k

)
MVol((convA)

(k)
, (convB)

(2n−k)
)

=

(
2n

n

)
MVol((convA)

(n)
, (convB)

(n)
) =

(
2n

n

)

We conclude this section with a reiteration of the various
root counts involved in the discussion. Recall that for a power
network G and a choice of (Y, S), the number of isolated
non-deficient solutions of the original (non-algebraic) load
flow equation (1) (physical solutions), the number of isolated
non-deficient complex solutions of the algebraic load flow
equation (5), and the bounds discussed above are related as
follows:
Physical
solution

count
≤

Complex
solution

count
≤ CCBKK

bound
≤ AP

bound
≤ BBLSY

bound
≤ CB

bound

Moreover, the CCBKK bound and the AP bound will be
identical under the assumption that inject power S1, . . . , Sn

are all nonzero.

C. Computing CCBKK and AP bounds

The CCBKK bound which is the BKK bound applied to
the special “conjugate coordinate” algebraic formulation (5)
can be computed using efficient software programs such as
DEMiCs [52], Gfan [53], MixedVol [54], MixedVol-2.0 [55].
For larger power networks involving many buses, the induced
algebraic load flow equation may contain a large number
of terms, and hence parallel computing technology will be
essential. MixedVol-3 [56], [57] (with an improved version
integrated in Hom4PS-3 [51]) is capable of computing the
CCBKK bound for larger power networks in parallel on a
wide range of hardware architectures including multi-core
systems, NUMA systems, and computer clusters. As noted
in Remark 2, however, there is a built-in level of redundancy
in the Newton polytopes (see the Appendix) of the algebraic
load flow equations. The formulation of the AP bound takes
advantage of this natural redundancy and can generally be
computed much more easily than the CCBKK bound for larger
power networks. The software package libtropicana [58],
developed by the first named author, is designed to compute
the AP bound for power networks (the normalized volume of
the polytopes defined in § III-B). But since the AP bound is
formulated in terms of the volume of a convex polytope (the
symmetric AP), any software that can compute such volume
exactly can be used to provide this bound. A survey on the
various algorithms for exact volume computation can be found
in [59].

D. Homotopy methods for solving load flow equations

The previous sections described the CCBKK and AP bounds
for the number of isolated non-deficient complex solutions
to the algebraic load flow equations. It is worth reiterating
that the CCBKK bound is more than just an upper bound:
As shown in Theorem 2 and Remark 1, it is actually the
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generic complex root count for the given network topology
in the sense that for almost all choices of Y and S, the total
number of isolated non-deficient complex solutions is exactly
the CCBKK bound. While the AP bound, in general, may be
larger, we shall show in § IV that the two coincide for all
the networks we have investigated in the present work. The
family of numerical methods known as homotopy methods
have been proved to be a robust and efficient approach for
solving algebraic load flow equations. One great strength of
these methods lies in the parallel scalability: in principle, each
solution can be computed independently. This feature is of
particular importance in dealing with larger power networks
(hence more complicated equations). It is therefore a natural
question to ask: is there a homotopy method that can solve (5)
by tracking CCBKK bound number of homotopy paths? This
section establishes the answer in the affirmative.

This homotopy method is the polyhedral homotopy method
developed in [44]. Here we briefly state the construction:
Choosing a pair of random rational numbers ωij and ω′ij for
i, j = 1, . . . , n. With these we define the homotopy function

HG,Y,S(v,u, t) =



∑n
k=0 Y1k (t)v1ukt

ω1k − S1(t)
...∑n
k=0 Ynk(t)vnukt

ωnk − Sn(t)∑n
k=0 Y

′
1k (t)u1vkt

ω′k1 − S′1(t)
...∑n
k=0 Y

′
nk(t)unvkt

ω′kn − S′n(t).

(6)

where

Yij(t) = (1− t)Zij + tY ∗ij Si(t) = (1− t)Wi + tSi

Y ′ij(t) = (1− t)Z ′ij + tYij S′i(t) = (1− t)W ′i + tS∗i

and (Zij) and (Z ′ij) are randomly chosen complex matrices
of the same sparsity structure as Y and W = (Wi) and W ′ =
(W ′i ) are two random complex vectors in Cn.

Clearly HG,Y,S(v,u, 1) ≡ PG,Y,S(v,u). For generic choice
of Z, Z ′, W , W ′, ω and ω′, it can be shown that for any
t ∈ (0, 1), the non-deficient solutions of HG,Y,S(v,u, t) = 0
are all isolated and the total number is exactly the CCBKK
bound. Moreover, as t varies in (0, 1), the corresponding
solutions of HG,Y,S(v,u, t) = 0 also vary smoothly forming
solution paths that collectively reach all the desired solutions
of PG,Y,S(v,u) = 0. Thus, once the “starting points” of
each solution path at t = 0 are found, standard numerical
continuation techniques can be used to track the solution paths
and reach all the isolated non-deficient complex solutions
which would include all the physical solutions (solutions of
the original non-algebraic load flow equations). Extraneous
solutions (solutions with vi 6= ui for some i) can be discarded1

An apparent difficulty is in identifying the “starting points”.
After all, at t = 0, HG,Y,S(u,v, t) becomes constant. This is
surmounted via a construction known as mixed cells which

1From a practical point of view, however, one may still want to keep “nearly
physical”solutions for which vi ≈ ui even if the equalities do not hold exactly.
This may be of particular importance when coefficients (Y, S) are derived
from inaccurate data as it is so often the case for real world power networks.

|B| 4 5 6 7 8 9 10 11 12

Solutions 8 16 32 64 128 256 512 1024 2048
CCBKK 8 16 32 64 128 256 512 1024 2048
AP 8 16 32 64 128 256 512 1024 2048
BBLSY 20 70 252 924 3432 12870 48620 184756 705432
CB 64 256 1024 4096 16384 65536 262144 1048576 4194304

Table I: Comparison of the solution bounds for path graphs.

|B| 4 5 6 7 8 9 10 11 12

Solutions 16 40 96 224 512 1152 2560 5632 12288
CCBKK 16 40 96 224 512 1152 2560 5632 12288
AP 16 40 96 224 512 1152 2560 5632 12288
BBLSY 20 70 252 924 3432 12870 48620 184756 705432
CB 64 256 1024 4096 16384 65536 262144 1048576 4194304

Table II: Comparison of solution bounds for ring graphs.

are themselves the by-product from computing the CCBKK
bound. Here, we refer to standard references [25], [44],
[46] for technical details. This method is implemented in
Hom4PS-2.0 [60], Hom4PS-3 [51], PHCpack [61], and
PHoM [62]. The application of polyhedral homotopy to load
flow equations will be explored in future works, here we
simply emphasize that with the polyhedral homotopy method,
the number of paths one needs to track is precisely the CCBKK
bound of (5), and the process of computing this bound also
produce the starting points of these paths. This fact adds to the
practical importance of a tight bound on the number of isolated
solutions to (5): Both the bound itself and its computing
process are necessary to kick-start a NPHC method, especially
the polyhedral homotopy method, and a tighter bound would
directly lead to less search “dead ends”.

IV. SOLUTION BOUNDS FOR CERTAIN POWER NETWORKS

We now provide concrete computation results for CCBKK
and AP bounds induced by certain graphs. Recall that all
graphs have self-loops for each node, reflecting the nonzero
diagonal entries of Y . In all cases, CCBKK and AP bounds
are computed via MixedVol-3 [56], [57] and libtropicana [58]
respectively. Complex solutions count of specific load flow
systems are computed by solving the systems via Hom4PS-
3 [51], [63].

A. Path and ring graphs

We first consider two sparse families of graphs — paths and
rings (cycles). Table I and Table II show the 5-way comparison
among the bounds described above and the actual complex
solution count2 for paths and rings of various sizes. Note that
in all cases computed (100 in total, with 10 random Y matrices
for each |B|), the actual complex solution count, the CCBKK
bound, and the AP bound are exactly the same. Moreover, for
trees, both bounds proposed in this paper seem to grow as 2n

while the best previously known bound, the BBLSY bound,
is
(
2n
n

)
. The asymptotic advantage is clear since 2n/

(
2n
n

)
→ 0

as n grows, and it is clear from the table that the gap between
the two can be very large even for small n values (e.g. a 344
fold difference for n = 11).

2Since the solution count may depend on the coefficients (Yij and Si), we
used a sample of randomly chosen set of coefficients for each graph.
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c1\c2 2 3 4 5 6

2 4/4/6 12/12/20 40/40/70 140/140/252 504/504/924
3 12/12/20 36/36/70 120/120/252 420/420/924 1512/1512/3432
4 40/40/70 120/120/252 400/400/924 1400/1400/3432 5040/5040/12870
5 140/140/252 420/420/924 1400/1400/3432 4900/4900/12870 17640/17640/48620
6 504/504/924 1512/1512/3432 5040/5040/12870 17640/17640/48620 63504/63504/184756

Table III: 3-way comparison for two completely connected
subnetworks of sizes c1 and c2 respectively sharing one node.

B. Clusters

Real power networks generally exhibit a level of “cluster-
ing” — certain subset of buses are densely connected while on
a larger scale, the connections among such subsets are sparse.
Here for simplicity, we focus on the most extreme cases where
a larger network is created by joining completely connected
subnetworks. For comparison, in each case we only show the
3-way comparison among the CCBKK bound, the AP bound,
and the BBLSY bound (due to the large amount of data).

(a) Sharing one node (b) Sharing two nodes

Figure 1: Completely connected subgraphs sharing nodes.

1) Subnetworks sharing nodes: See, for example, the net-
works shown in Figure 1. Table III shows the 3-way compari-
son for cases where two completely connected subnetworks
share a single (non-reference) bus. These cases have been
studied in [64]. Our computational results agree with their
assertion. Table IV shows the similar comparison for cases
where two completely connected subnetworks share two (non-
reference) buses. These cases have been extensively studied
in [34] via numerical methods. The results and conjectures
in that work are precisely reproduced by our computation.
For larger networks, the AP bounds are generally much
easier to compute than the CCBKK bound using existing
implementations. In Table V and VI, we show the AP bounds
these clusters.

c1\c2 2 3 4 5 6

2 2/2/2 6/6/6 20/20/20 70/70/70 252/252/252
3 6/6/6 18/18/20 60/60/70 210/210/252 756/756/924
4 20/20/20 60/60/70 200/200/252 700/700/924 2520/2520/3432
5 70/70/70 210/210/252 700/700/924 2450/2450/3432 8820/8820/12870
6 252/252/252 756/756/924 2520/2520/3432 8820/8820/12870 31752/31752/48620

Table IV: 3-way comparison for two completely connected
subnetworks of sizes c1 and c2 respectively sharing two nodes.

2) Completely connected subnetworks connected by edges:
For example, Figure 2a shows a network that consists of two
cliques of size four and five respectively connected by a single
edge. Table VII shows the AP bounds for networks created
from joining two completely connected subnetworks by one
edge. Table VIII shows the AP bounds of the more general
cases where the networks consist of multiple completely
connected subnetworks of the same sizes connected via edges

c1\c2 2 3 4 5 6 7 8

2 4 12 40 140 504 1848 6864
3 12 36 120 420 1512 5544 20592
4 40 120 400 1400 5040 18480 68640
5 140 420 1400 4900 17640 64680 240240
6 504 1512 5040 17640 63504 232848 864864
7 1848 5544 18480 64680 232848 853776 3171168
8 6864 20592 68640 240240 864864 3171168 11778624

Table V: The AP bounds for graphs consisting of two cliques
of size c1 and c2 respectively sharing a non-reference node.

c1\c2 2 3 4 5 6 7 8

2 2 6 20 70 252 924 3432
3 6 18 60 210 756 2772 10296
4 20 60 200 700 2520 9240 34320
5 70 210 700 2450 8820 32340 120120
6 252 756 2520 8820 31752 116424 432432
7 924 2772 9240 32340 116424 426888 1585584
8 3432 10296 34320 120120 432432 1585584 5889312

Table VI: The AP bounds for graphs consisting of two cliques,
of size c1 and c2 respectively sharing two non-reference nodes.

to form chain-like structure. See, for example, the network
shown in Figure 2b where five cliques each of size three are
connected via edges that, on a macro level, resembles a chain.

V. IEEE 14 BUS SYSTEM

Solutions 427680
CCBKK 427680
AP 427680
BKK-MNT 49283072
BBLSY 10400600
CB 67108864

Table IX: Solution bounds
for IEEE 14-bus system.

The “IEEE 14-bus system”,
representing a portion of the
power system of the Midwestern
USA in the 1960s, is a widely
used benchmark system in test-
ing solvers for load flow equa-
tions. Here we show that the
isolated complex solution count,
CCBKK bound, and AP bound
are much smaller than previously
studied solution bounds. In particular, the CCBKK bound in
our formulation of the load flow equations is 427680. This
means the polyhedral homotopy method described in §III-D
need to trace at most 427680 paths to obtain all isolated
non-deficient complex solutions. Compared with a previous
polynomial formulation [26] which requires the tracking of

c1\c2 1 2 3 4 5 6 7 8 9 10

1 4 12 40 140 504 1848 6864 25740 97240
2 4 8 24 80 280 1008 3696 13728 51480 194480
3 12 24 72 240 840 3024 11088 41184 154440 583440
4 40 80 240 800 2800 10080 36960 137280 514800 1944800
5 140 280 840 2800 9800 35280 129360 480480 1801800
6 504 1008 3024 10080 35280 127008 465696 1729728
7 1848 3696 11088 36960 129360 465696 1707552
8 6864 13728 41184 137280 480480 1729728
9 25740 51480 154440 514800 1801800

10 97240 194480 583440 1944800

Table VII: The AP bound of graphs consisting of two cliques
of size c1 and c2 joint by a single edge.

c\m 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
1 2 4 8 16 32 64 128
2 2 8 32 128 512 2048 8192 32768
3 6 72 864 10368 124416 1492992 17915904
4 20 800 32000 1280000
5 70 9800 1372000
6 252 127008
7 924 1707552
8 3432

Table VIII: The AP bound for m cliques of size c.
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(a) Two completely connected
subnetworks jointed via an edge.

(b) A network of several subnet-
works linked together via edges.

Figure 2: Completely connected subnetworks linked by edges

49283072 paths (BKK-MNT), our result is around a 115 fold
reduction. With both polynomial formulations having the same
number of variables and equations, it is reasonable to expect
similar reduction in the total time required to track all the
paths and hence solve the load flow system. In particular, with
a random choice of the Y -matrix, Hom4PS-3 [51], [63] was
able to find all solutions in less than 5 minutes (297 seconds)
on a single machine with 4 Intel Xeon processors. This
example also serves to show the great computational advantage
of AP bound over CCBKK bound: Using libtropicana, 77 fold
reduction in computation time is achieved in computing the
AP bound when compared to the equivalent computation of
the CCBKK bound using MixedVol-3 on the same machine.

VI. CONCLUSION

This paper focused on a tight upper bound on the number
of non-deficient complex load flow solutions that take into
consideration the network topology (cf. [26]–[29], [31], [32],
[34]) which is crucially important in constructing efficient
NPHC methods or providing stopping criteria for other iter-
ative methods. We described a specific algebraic formulation
of the load flow equations and a corresponding tighter upper
bound — the CCBKK bound. We showed that for some
graphs there exists at least some generic parameter values for
which the CCBKK bound is attainable. Another contribution
is the introduction of a novel bound, called adjacency polytope
bound, which can be significantly easier to compute for large
systems than the CCBKK bound.
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APPENDIX

For convex polytopes Q1, . . . , Qn ⊂ Rn and positive num-
bers λ1, . . . , λn, the n-dimensional volume of the Minkowski
sum [65] λ1Q1+ · · ·+λnQn is a homogeneous polynomial of
degree n in λ1, . . . , λn. The coefficient of the term λ1 · · ·λn
in this polynomial is known as the mixed volume [65], [66]
of Q1, . . . , Qn, denoted MVol(Q1, . . . , Qn). The BKK bound
is formulated in terms of mixed volume. Given a polynomial

system P = (p1, . . . , pn) the BKK bound is the mixed volume
of the Newton polytopes of p1, . . . , pn.

The proof for Theorem 2 hinges on the polarization lemma
in the theory of complex variables:

Lemma 1 (W. Wirtinger). Suppose that H : (C \ {0})n ×
(C \ {0})n → C is a holomorphic function of the 2n complex
variables (z,w), and that H(z, z∗) = 0 for all z ∈ (C\{0})n.
Then, H(z,w) = 0 for all (z,w) ∈ (C \ {0})n × (C \ {0})n.

The software package libtropicana [58] used to compute
the AP bound in the examples shown, is developed by the first
named author. For a convex polytope whose vertices have inte-
ger coordinates, libtropicana computes its normalized volume
by finding a simplicial subdivision. It is based on a pivoting
algorithm similar to the core algorithm of lrs [67], [68].
However, unlike lrs, which uses the “reverse search” scheme
to optimize memory efficiency, libtropicana is based on a
“forward search” scheme that focuses on speed (potentially
at the expense of higher memory consumption) for moderate
sized polytopes. It is written completely in C++ with optional
interface for leveraging BLAS and spBLAS (Sparse BLAS)
routines. libtropicana is open source software — its source is
freely available under the terms of the LGPL license.
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basis,” ACM SIGSAM Bulletin, vol. 29, no. 1, pp. 1–13, 1995.

[21] J. Ning, W. Gao, G. Radman, and J. Liu, “The Application of the
Groebner Basis Technique in Power Flow Study,” in North American
Power Symp. (NAPS), Oct. 2009.

[22] H. D. Nguyen and K. S. Turitsyn, “Appearance of multiple stable load
flow solutions under power flow reversal conditions,” in PES General
Meeting— Conference & Exposition, 2014 IEEE. IEEE, 2014, pp. 1–5.

[23] D. Cifuentes and P. Parrilo, “Exploiting Chordal Structure in Polynomial
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