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Abstract. Numerical algebraic geometry revolves around the study of solutions to polynomial systems via nu-
merical method. The polyhedral homotopy of Huber and Sturmfels for computing isolated solutions
and the concept of witness sets as numerical representations of non-isolated solution components,
put forth by Sommese and Wampler, are two of the fundamental tools in this field. In this paper,
we show that a modified polyhedral homotopy can reveal sample sets of non-isolated solution com-
ponents, akin to witness sets, as by-products from the process of computing isolated solutions. In
certain cases, this method also leads to a natural decomposition of the BKK bound into a sum of
local contributions from individual irreducible components.
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1. Introduction. Polynomial systems arise naturally in scientific applications since many
computational problems are eventually reduced to algebraic equations. In recent decades, ho-
motopy methods emerged as an important class of numerical methods for finding all solutions
to polynomial systems for their efficiency and scalability [12, 24, 40]. Homotopy methods
work by continuously deforming a target system into a starting system that can be solved
easily. The corresponding solutions also vary smoothly under this deformation, and they form
smooth paths that reach the solutions of the target system. The desired solutions can thus
be located by tracking these paths using efficient and robust algorithms.

Among them, the polyhedral homotopy of B. Huber and B. Sturmfels [17], developed in
the 1990s, is of particular importance due to its ability to optimally exploit combinatorial
structures encoded in polynomial systems. Around the same time, the seminal work by A.
Sommese and C. Wampler [39] opened up a new frontier in this field by allowing non-isolated
(a.k.a. positive-dimensional) solution sets to be computed and manipulated as first-class
objects through homotopy methods. In the ensuing years, these two ideas developed separately
with minimum interactions with one another.1 The main goal of this paper is to show these
two seemingly independent approaches can be unified into a single numerical method that
inherit the strengths of both.
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1.1. Combining two homotopy approaches. In this paper, we present a “stratified” ver-
sion of the polyhedral homotopy for sampling positive-dimensional solution sets of Laurent
polynomial systems with the following key advantages

1. The number of paths is the Bernshtein-Kushnirenko-Khovanskii bound, whereas the
complexity of the traditional approach is only bounded by the Bézout bounds;

2. This homotopy preserves the monomial structure which is of particular importance in
many problems originating from science and engineering where monomial structure
imposes additional constraints that are crucial for specific applications; and

3. one single homotopy is used to sample components of all dimensions, including isolated
solutions, and sample sets for non-isolated solution components are produced as by-
products from the process of computing isolated solutions with minimum overhead.

1.2. Decomposition of BKK bound. Bernshtein’s first theorem states that for a system
of n Laurent polynomials (f1, . . . , fn) in n variables, the number of common isolated zeros
in (C∗)n = (C \ {0})n is bounded by the mixed volume mvol(P1, . . . , Pn) of the Newton
polytopes P1, . . . , Pn of f1, . . . , fn, respectively. It equals the normalized volume n! voln(P )
if P1, . . . , Pn = P (i.e., the unmixed case, which is established by Kushnirenko). This is
known as the Bernshtein-Kushnirenko-Khovanskii (BKK) bound. Indeed, for generic choices
of coefficients, all common zeros in (C∗)n will be isolated, and this bound will be exact.

However, if the zero set of (f1, . . . , fn) in (C∗)n contains positive-dimensional components,
then the number of isolated zeros in (C∗) will be strictly less than the BKK bound. A natural
question to ask is if it is possible to decompose the BKK bound as a sum of local contributions
from each isolated zero and the positive-dimensional components.

This question mirrors the deep question of how to decompose the Bézout number into
local contributions from subvarieties that is at the heart of intersection theory. The stratified
polyhedral homotopy method proposed in this paper will provide a homotopy-based answer
to this question, at least for unmixed cases involving reduced components.

1.3. A motivating example. We start with a simple motivating example.

Example 1.1. Consider a trivial example of a polynomial system F (x1, x2), given by{
(x2

1 + x2
2 − 9)(x1 + x2 − 3) = x3

1 + x2
1x2 − 3x2

1 + x1x
2
2 + x3

2 − 3x2
2 − 9x1 − 9x2 + 27

(x2
1 + x2

2 − 9)(x1 − x2 − 1) = x3
1 − x2

1x2 − 1x2
1 + x1x

2
2 − x3

2 − 1x2
2 − 9x1 + 9x2 + 9.

Its complex zero set consists of two components: A 1-dimensional component V1 defined
by x2

1 + x2
2 − 9 = 0 (including its distinguished singular points) and a 0-dimensional (i.e.,

isolated) nonsingular component V0 at x(0) = (x1, x2) = (2, 1). When the standard polyhedral
homotopy method (see Subsection 2.1) is applied, the nonsingular isolated zero x(0) can be
obtained. That is, the polyhedral homotopy defines solution paths, one of which reaches x(0).
With minor modifications, which the rest of this paper will detail, the polyhedral homotopy
method can also produce a “numerically well-behaved” sample point from V1. We consider
the “rank-1” perturbation

G(x1, x2) =

{
c′11x

3
1 + c′12x

2
1x2 + c′13x

2
1 + c′14x1x

2
2 + c′15x

3
2 + c′16x

2
2 + c′17x1 + c′18x2 + c′19

c′21x
3
1 + c′22x

2
1x2 + c′23x

2
1 + c′24x1x

2
2 + c′25x

3
2 + c′26x

2
2 + c′27x1 + c′28x2 + c′29,
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which is derived from the target system F by replacing the coefficient matrix with[
c′11 c

′
12 c
′
13 c
′
14 c
′
15 c
′
16 c
′
17 c
′
18 c
′
19

c′21 c
′
22 c
′
23 c
′
24 c
′
25 c
′
26 c
′
27 c
′
28 c
′
29

]
=
[

1 1 −3 1 1 −3 −9 −9 27
1 −1 −1 1 −1 −1 −9 9 9

]
+
[
c∗11 c

∗
12 c
∗
13 c
∗
14 c
∗
15 c
∗
16 c
∗
17 c
∗
18 c
∗
19

c∗21 c
∗
22 c
∗
23 c
∗
24 c
∗
25 c
∗
26 c
∗
27 c
∗
28 c
∗
29

]
where C∗ = [c∗ij ] is a generic complex matrix of rank 1. That is, we

modify the coefficient matrix with a generic rank-1 perturbation. Then
among the isolated complex zeros of G, at least one is also contained
in V1, the 1-dimensional zero-component defined by F . These zeros
depends on the choice of the generic perturbation C∗, but, regardless of
the choice, this zero can serve as a “numerically well-behaved” sample
point of V1 in the sense that it will be both a nonsingular zero of G and
a smooth point in V1. We will define a modified polyhedral homotopy
H(x1, x2, s), which we will call a “stratified” polyhedral homotopy,
such that H(x1, x2,

1
2) ≡ G(x1, x2) and H(x1, x2, 0) ≡ F (x1, x2), and

(some of) the solution paths defined by H(x1, x2, s) = 0 in C2× [0, 1] will reach sample points
in V1 at s = 1

2 and the isolated point x(0) at the end point s = 0. In other words, the sample

point x(1) for the 1-dimensional solution component V1 is produced as a by-product of the
process of computing the isolated solution x(0). The picture on the left shows a cartoonish
illustration of the homotopy paths at s = 0, s = 1

2 , and s = 1, passing through sample points
of V1 (the blue circle) and the isolated point V0 (the red point).

1.4. Related works. The approach taken here is closely related to the homotopy method
studied by W. Zulehner [44] for finding one point on each connected component of the complex
zero set of a polynomial system as well as the stronger version developed by D. Bates, D.
Eklund, J. Hauenstein, and C. Peterson [3] that targets the more refined structure known as
isosingular set. However, both methods result in complexity measures that are linear in the
Bézout number of a given polynomial system, whereas the proposed method has a complexity
that is linear in the BKK (Kushnirenko) bound, which can be much lower for sparse systems.

Just like the techniques utilizing “twisted Chow form” and “toric perturbation” developed
by M. Rojas [30], the proposed homotopy method also accelerates the computation of positive
dimensional zero set by exploiting the combinatorial structure encoded in the Newton polytope
of the defining polynomial system. The main difference here is that while Rojas took a
resultant-based approach, we are taking a homotopy-based approach.

1.5. Organization. In the rest of this paper, we will describe the construction of this strat-
ified polyhedral homotopy and outline the theoretical underpinnings. To be self-contained,
Section 2 will first review notations, concepts, standard results, and theoretical ingredients
to be used in the rest of this paper. Section 3 develops the basic construction of a stratified
polyhedral homotopy method for sampling positive dimensional solution sets of an unmixed
Laurent polynomial system. General cases are considered in Section 4. In Section 5, we ex-
plain how this homotopy method can produce, as a by-product, a decomposition of the BKK
bound into local contributions from components (including isolated and positive-dimensional
components). A few concrete examples are studied in Section 6. We conclude with a few
remarks in Section 7. Technical detail of a few well known algorithms for bootstrapping
polyhedral homotopy method are included in the appendix (Appendix A) for completeness.
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2. Notations and preliminaries. Let Mn×m(Z) be the set of n ×m integer matrices. A
matrix U ∈ Mn×n(Z) is unimodular if detU = ±1, in which case U−1 ∈ Mn×n(Z). For
A ∈ Mn×m(Z), there are unimodular P ∈ Mn×n(Z) and Q ∈ Mm×m(Z) such that PAQ =
diag(d1, . . . , dr, 0, . . . , 0), where r = rankA, and positive integers d1 | d2 | · · · | dr are the
invariant factors of A. This is the Smith Normal Form of A.

For x = (x1, . . . , xn) and α = (α1, . . . , αn)> ∈ Zn, xα = xα1
1 · · · xαn

n is a Laurent mono-

mial. Similarly, for A =
[
α(1) · · · α(m)

]
∈ Mn×m(Z) the notation xA = (xα

(1)
, . . . ,xα

(m)
)

describes a system of Laurent monomials. It is natural to restrict the domain to the alge-
braic torus (C∗)n = (C \ {0})n, which has a natural group structure given by componentwise
multiplication. A matrix A ∈Mn×m(Z) induces a group homomorphism x 7→ xA from (C∗)n
to (C∗)m, which is also complex holomorphic. If A ∈ Mn×n(Z) is unimodular, then the map
x 7→ xA is an automorphism the group (C∗)n, and it is also a bi-holomorphic map.

A Laurent binomial in x = (x1, . . . , xn) is an expression of the form c1x
α + c2x

β where
α,β ∈ Zn, and c1, c2 ∈ C∗. Without altering its zero set in (C∗)n, the equation c1x

α+c2x
β = 0

can be rewritten as xα−β = −c2/c1. A Laurent binomial system is a system of the form
(xa1

, . . . ,xam
) = (b1, . . . , bm) where ai ∈ Zn and bj ∈ C∗ for i = 1, . . . , n and j = 1, . . . ,m.

Using the matrix exponent notation, it can be written as xA = b where the integer matrix
A ∈Mn×m(Z) collects the exponents and the row vector b ∈ (C∗)m collects all the coefficients.

Lemma 2.1. For a matrix A ∈ Mn×n(Z) and any b ∈ (C∗)n, all isolated solutions of
Laurent binomial system xA = b are nonsingular, and the total number is | detA|.

A Laurent polynomial is a linear combination of Laurent monomials, i.e., an expression
of the form f =

∑m
k=1 ckx

α(k)
where each ck ∈ C∗ and α(k) ∈ Zn. Here, the set supp(f) :=

{α1, . . . ,αm} ⊂ Zn is known as the support of f . Its convex hull newt(f) := conv(supp(f))
is the Newton polytope of f . A Laurent polynomial system is a system F = (f1, . . . , fq) of
Laurent polynomials in n variables. Its common zero sets in (C∗)n and Cn are denoted by
V∗(F ) and V(F ), respectively. They are equipped with rich structures of very affine and affine
varieties, respectively. If nonempty, they are composed of irreducible components, each with
a well-defined dimension. The union of their d-dimensional components (isolated zeros) are
denoted by V∗d(F ) and Vd(F ), respectively. Kushnirenko’s Theorem and Bernshtein’s First
Theorem provide us the exact formulae for the maximum number of points in V∗0 (F ).

Theorem 2.2 (Kushnirenko [19]). For a Laurent polynomial system F = (f1, . . . , fn) in x =
(x1, . . . , xn) with identical support S = supp(fi) for i = 1, . . . , n, |V∗0 (F )| ≤ n! voln(conv(S)).

Theorem 2.3 (Bernshtein’s First Theorem [5]). For a Laurent polynomial system F =
(f1, . . . , fn) in the variables x1, . . . , xn, |V∗0 (F )| ≤ mvol(newt(f1), . . . ,newt(fn)).

Here, mvol(P1, . . . , Pn) is the mixed volume of the convex polytopes P1, . . . , Pn, and it is
defined to be the coefficient of the monomial λ1 · · ·λn in the volume of the Minkowski sum
λ1P1 + · · ·+λnPn, which is a homogeneous polynomial in λ1, . . . , λn. The upper bounds given
by both theorems are sharp in the sense that they hold with equality for generic coefficients.
They have since been called the Bernshtein-Kushnirenko-Khovanskii (BKK) bounds.

In the following subsections, we briefly review the four main theoretical ingredients from
which we will develop the stratified polyhedral homotopy method. Our review is by no mean
comprehensive, and we refer to standard text in this field for thorough exposition.
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2.1. Polyhedral homotopy. In their seminal work [17], Huber and Sturmfels introduced
the polyhedral homotopy method for computing all isolated C∗-zeros of Laurent polynomial
systems that can optimally exploit their monomial structure.2

For a square Laurent system F = (f1, . . . , fn) in x = (x1, . . . , xn) given by

fi(x) =
∑
a∈Si

ci,ax
a, for i = 1, . . . , n,

we select generic coefficients c∗i,a for each pair of i ∈ {1, . . . , n} and a ∈ Si and lifting functions
ωi : Si → Q+ with generic images for i = 1, . . . , n. Among many variations, the numerically
stable formulation for the polyhedral homotopy of Huber and Sturmfels can be described as
the homotopy function H = (h1, . . . , hn) : (C∗)n × [0, 1]2 → Cn given by

(2.1) hi(x, t0, t1) =
∑
a∈Si

[t1c
∗
i,a + (1− t1)ci,a]xae−Mωi(a)t0 for i = 1, . . . , n,

where M ∈ R+ is determined by the Newton polytopes of h1, . . . , hn. This numerically stable
variant is different from the original formulation by Huber and Sturmfels [17] and was proposed
by S. Kim and M. Kojima [18] and, independently, by T.-L. Lee, T.-Y. Li, and C.-H. Tsai
[21]. This formulation will be referred to as the classical polyhedral homotopy.

Clearly, H is continuous and H(x, 0, 0) ≡ F (x). Moreover, along any given smooth path
(t0(s), t1(s)) in the parameter space (0, 1)2, under the genericity assumption, the isolated C∗-
zero of H(x, t0, t1) also vary smoothly and form “solution paths”. The limit points of these
solution paths as (t0, t1) → (0, 0) reach all isolated C∗-zeros of F . The starting points of
these solution paths can be computed by solving a series of Laurent binomial systems. These
binomial systems are, in turn, derived from a process known as mixed cell computation.

Once these starting points are obtained, the corresponding solution paths can be tracked
via standard numerical algorithms, known as “path trackers”, toward their end points, which
include all isolated C∗-zeros of the target system F .

In this formulation, there is some flexibility in choosing the parameter path (t0(s), t1(s)).
One choice that is widely adopted in recent implementations is the path (t0(s), t1(s)) = (s, s).
In contrast, the “2-step” procedure takes the piecewise linear path (1, 1)→ (0, 1)→ (0, 0).

2.2. Parameter homotopy. The smoothness of the solution paths defined by the homo-
topy (2.1) over a parameter path t(s) and their ability to reach all isolated C∗-zeros of the
target system F are the key features that make this homotopy method practical. Indeed,
much of the work in the field of numerical homotopy continuation methods are devoted to the
rigorous proof of these two properties (nicknamed “smoothness” and “accessibility” properties
in Ref. [25]) for various homotopy constructions. One general result that will be referenced
repeatedly is the Parameter Homotopy Theorem of A. Morgan and A. Sommese [29] for ho-
motopy constructions of the form H(x, t) = F (x;p(t)) where the coefficients of a polynomial
system F are polynomial functions in complex parameters p = (p1, . . . , pm).

2In a parallel development, a recursive homotopy method that can also take advantage of the Newton
polytope structure to solve Laurent polynomial systems was proposed by J. Verschelde, P. Verlinden, and R.
Cools around the same time [42]. This recursive homotopy method has also been referenced as polyhedral
homotopy in some papers. The present paper, however, only focuses on extending the polyhedral homotopy
method of B. Huber and B. Sturmfels [17].
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Theorem 2.4 (Parameter homotopy ([40] Theorem 7.1.1, [29])). Let F (x;p) be a system of
n polynomials in the n variables x = (x1, . . . , xn) and m parameters p = (p1, . . . , pm), and let
N (p) be the number of (isolated) nonsingular zeros of F (x;p) in Cn for a given p. Then,

1. N (p) is finite, and it is the same, say N , for almost all p ∈ Cm;
2. For all p ∈ Cm, N (p) < N ;
3. The subset of Cm where N (p) = N is Zariski open (and nonempty), i.e., the excep-

tional set P ∗ = {p ∈ Cm | N (p) < N} is an affine algebraic set contained within an
algebraic set of dimension n− 1.

4. The homotopy F (x;p(t)) = 0 with an analytic function p(t) : [0, 1]→ Cm \ P ∗ has N
continuous and nonsingular solution paths;

5. As t → 0, the limits of the solution paths of the homotopy F (x;p(t)) = 0 with p(t) :
(0, 1]→ Cm \ P ∗ include all the (isolated) nonsingular zeros of F (x;p(0)) = 0 in Cn.

The variation with p being the coefficients in F , including constants, was also discovered
by T.-Y. Li, T. Sauer, and J. Yorke [26], which led to the extension of the BKK bound [27, 32].

2.3. Positive dimensional zero sets and witness sets. In their pioneer work [39], A.
Sommese and C. Wampler kick-started the development of numerical algebraic geometry, a
new field in computational mathematics that focuses on the study of positive-dimensional solu-
tion sets defined by polynomial systems, i.e., algebraic sets, via numerical homotopy methods.
(See Refs. [16, 38] for an accessible survey and a broad overview of the field, respectively)
One of the fundamental building block in field is the concept of “linear slices”. A linear slice
of a solution set is its intersection with an affine subspace, which can help reveal important
structural information about the solution set itself.

Theorem 2.5 (Linear Slicing ([40] Theorem 13.2.1)). Let V ⊂ Cm be a pure d-dimensional
algebraic set. There is a Zariski open dense U ⊂ Pm such that for c ∈ U and L = V(L(z; c)),

1. if d = 0, then L ∩ V is empty;
2. if d > 0, then L ∩ V is nonempty and (d− 1)-dimensional,
3. if d > 1 and V is irreducible, then L ∩ V is irreducible.

Here, the defining equations of hyperplanes in Cm are parametrized by points in the
complex projective space CPm, through the map

[c0 : c1 : · · · : cm] 7→ L(z1, . . . , zm; c0, c1, . . . , cm) = c0 + c1z1 + · · ·+ cmzm.

The stronger version needed in this paper allows for systems of linear polynomials used as
linear slicing equations, which we restate here.

Proposition 2.6 ([40] Theorem 13.2.2 and Lemma 13.2.3). Let V ⊂ Cm be a pure d-
dimensional affine algebraic set with d ≥ 1. There is a Zariski open dense subset U ⊂
(C(m+1))k such that for (c∗1, . . . c

∗
k) ∈ U and L = V(L(z; c∗1, . . . , c

∗
k)),

1. if d < k, then L ∩ V is empty;
2. if d > k, then L ∩ V is nonempty and positive-dimensional,
3. if d = k, then L ∩ V is nonempty and 0-dimensional.

Moreover, if V is a component of the zero set of a polynomial system F of multiplicity 1, then
L ∩ V is a component of V(F,L(z; c∗1, . . . , c

∗
k)) of multiplicity 1.
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The last case in the list above is of particular importance, and it leads to the concept
of witness set [35, 39] that has its theoretical underpinning in the rich classical study of the
connections between algebraic sets and their linear sections [4].

Remark 2.7. The linear slices in this proposition are simply parametrized by k-tuples of
complex vectors C = (c∗1, . . . , c

∗
k). As noted in Ref. [40], this is a rather coarse parametrization

since the image of C under any nonsingular linear transformation would result in the same
linear slicing. The much more natural parameter space is the Grassmannian Gr(k,Cn). This
distinction, however, is not important in our discussion, and we will prefer the parametrization
using k-tuples of complex vectors since they can be chosen at random directly.

2.4. Randomization. The final ingredient is the “randomization” process. For a system
F of q Laurent polynomials and a k× q matrix Λ, every zero of F is, of course, a zero of Λ ·F ,
if F is considered as a column vector. The following result provides the complete description
of the connection between the zero sets of F and Λ · F , respectively, for generic choices of Λ.

Theorem 2.8 ([40] Theorem 13.5.1). Let F = (f1, . . . , fq) be a system of polynomials on
Cn. Assume V ⊂ Cn is an irreducible affine algebraic set. Then there is a nonempty Zariski
open set U of k × q matrices such that for all Λ ∈ U ,

1. if dimV > n − k, then V is an irreducible component of V(F ) if and only if it is an
irreducible component of V(Λ · F );

2. if dimV = n − k, then V is an irreducible component of V(F ) implies that V is also
an irreducible component of V(Λ · F ); and

3. if V is an irreducible component of V (F ), its multiplicity as a solution component of
Λ · F (x) = 0 is greater than or equal to its multiplicity as a solution component of
F (x) = 0, with equality if either multiplicity is 1.

This produces a particularly useful preprocessing step for solving overdetermined polyno-
mial systems. Any system of q polynomials F = (f1, . . . , fq) in n variables with q > n can
be converted into a square system Λ · F of n polynomials in n variables through an n × q
nonsingular matrix Λ. Every zero of F will be a zero of Λ · F .

3. Stratified polyhedral homotopy for standard unmixed cases. Based on the four ingre-
dients reviewed above, this section aims to develop a homotopy continuation algorithm, in the
spirit of the cascade method [35], for numerically sampling reduced irreducible components of
all dimensions of the zero set of a Laurent polynomial system F = (f1, . . . , fq) in the variables
x1, . . . , xn. Here, a reduced irreducible component of V∗(F ) is simply an irreducible compo-
nent of multiplicity 1. They are also referred to as generically reduced irreducible component
since at almost all points on such a component, the nullity of the Jacobian matrix DF equals
the dimension of the component.

The goal is to construct a homotopy function H(x, s) such that its zero set {(x, s) ∈
(C∗)n×(0, 1] | H(x, s) = 0} consists of piecewise smooth solution paths that will pass through
finite “sample sets” Vn, Vn−1, . . . , V1, V0 with Vd ⊂ V∗d(F ) and Vd = ∅ if and only if V ∗d (F ) = ∅
for d = n, n−1, . . . , 0. Moreover, for each reduced irreducible component of V∗d(F ), Vd contains
at least one nonsingular point of that component. In other words, the homotopy H defines
homotopy paths that can sample every reduced irreducible component of V∗(F ).

For simplicity, we first focus on a family of unmixed Laurent systems for which the con-
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struction of the proposed homotopy has a straightforward geometric interpretation. This
family will be referred to as the “standard unmixed cases”, which we shall define below. More
general cases will be discussed in Section 4.

Recall that a Laurent system F = (f1, . . . , fq) is unmixed if the supports supp(fi), for
i = 1, . . . , q, are all identical. In this case, this common support is denoted supp(F ). We can
express such an unmixed Laurent polynomial system in n variables in the compact notation

(3.1) F (x1, . . . , xn) = F (x) =


f1(x) = c1 · xA

...

fq(x) = cq · xA,

where the support matrix A = [a1 · · · am ] ∈ Mn×m(Z), with m = | supp(F )| > 0, collects
the exponent vectors in supp(F ) as columns, ck’s are row vectors collecting corresponding
coefficients, and ck · xA denotes the dot product between the two row vectors. To further
simplify our constructions, we first restrict our attention to systems in a “standard form”.

Definition 3.1. The unmixed Laurent polynomial system in (3.1) is said to be in standard
form if the support matrix A ∈Mn×m(Z) has the following properties

1. m > n+ 1 ;
2. A has a zero column ;
3. A has full row-rank ;
4. The invariant factors of A are ±1 .

These conditions can be assumed without loosing much generality: Condition 1 simply
eliminate simpler systems for which the proposed method would be unnecessary. Indeed, if
m ≤ n + 1, then the C∗-zero set of F is either empty or defined by binomials, and much
simpler methods can be used to describe the zero sets. Condition 2 is the requirement that
each Laurent polynomial has nonzero constant term, and it can be satisfied by multiplying
each polynomial by a Laurent monomial without altering the C∗-zero set of F . Condition 3
ensures that there is no nontrivial toric actions on the C∗-zero set when generic coefficients
are used. If r := rank(A) < n, then every C∗-zero x of F belong to a toric orbit of zeros
parametrized by a C∗-valued function t 7→ x ◦ tv defined on (C∗)r, where v is a primitive
generator of the left kernel of A. In that case, the C∗-zero set of F can be projected down
to (C∗)r so that it is defined by an unmixed Laurent system that satisfies this condition.
Finally, condition 4, i.e. the torsion-free condition, greatly simplifies our discussions, and
Subsection 4.1 will describe the procedure that will reduce the general case to the torsion-free
case. For now, we restrict our attention to the standard form.

3.1. Laurent polynomial systems as linear slices. In this paper, we aim to show the
seemingly independent approaches of the classical polyhedral homotopy and the linear slicing
method from numerical algebraic geometry can be unified into a single numerical method. In
service of this goal, we first establish a proper viewpoint through which we can see both. In
particular, we will make repeated use of the key observation that under the above assumptions,
the zero set V∗(F ) of the unmixed system (3.1) in standard form can be considered as a linear
slicing on a binomial system.
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Lemma 3.2. Let A ∈ Mn×m(Z) be the support matrix of the unmixed system (3.1) in
standard form. Then there exists a matrix B ∈ Mm×m−n(Z) for which V∗(F ) is the image,
under the bi-holomorphic map φA(x) = xA, of the C∗-zero set of the Laurent system

G(z1, . . . , zm) = G(z) =

{
zB − 1 = 0

ci · z = 0 for i = 1, . . . , q

where c1, . . . , cq are the coefficient vectors of the original polynomial system (3.1).

This is the basic setup for the “A-philosophy” for Laurent systems consolidated in the
classical text by I. Gel’fand, M. Kapranov, and A. Zelevinsky [15]. We include an elementary
and constructive proof for later reference.

Proof. Under the assumption that A is of full row rank and has invariant factors ±1, there
are unimodular matrices P ∈ Mn×n(Z) and Q ∈ Mm×m(Z) such that PAQ =

[
In 0n×k

]
,

where k = m−n > 0. Let B ∈Mm×k(Z) be the rightmost k columns of Q, which spans kerA,
and let C ∈Mk×m(Z) be the bottommost k rows of Q−1. Then CB = Ik, and hence[

C
A

]
B =

[
CB
AB

]
=

[
I
0

]
.

Our assumptions ensure that
[
C
A

]
is unimodular since[

I
P

] [
C
A

]
Q =

[
CQ
PAQ

]
=

[
0 Ik
In 0

]
.

Therefore,
[
C
A

]−1 ∈ Mm×m(Z). Let T = V∗(zB − 1) ⊂ (C∗)m. We shall construct a bi-
holomorphic map between points in V∗(F ) and points in a linear slice of T . Consider the map
φA : (C∗)n → (C∗)m given by φA(x) := xA. For any x ∈ (C∗)n, (φA(x))B = xAB = x0 = 1,
and thus φA(x) ∈ T . I.e., φA((C∗)n) ⊆ T . It remains to show that the restriction of φ on T

is bi-holomorphic. Define ψ : T → (C∗)m given by ψ(z) = z

[
C
A

]−1

. For any z ∈ T , write ψ(z)

as [y x] with x ∈ (C∗)n and y ∈ (C∗)k, then by construction z = ψ(z)

[
C
A

]
, and hence

1 = zB = (ψ(z))

[
C
A

]
B

=
[
y x

][ I
0

]
= y ◦ 1 = y.

Therefore,

z = ψ(z)

[
C
A

]
=
[
1 x

][C
A

]
= 1C ◦ xA = xA.

Let π : (C∗)m → (C∗)n be the projection to the last n coordinates, then for any z ∈ T ,

φ(π(ψ(z))) = φ(x) = xA = z.

Conversely, for any x ∈ (C∗)n,

π(ψ(φ(x))) = π(ψ(xA)) = π

(
x
A
[
C
A

]−1)
= π

(
x[0 I ]

)
= π

([
1 x

])
= x.

Therefore, the composition π ◦ ψ : T → (C∗)n is the inverse of the restriction of φ onto T as
shown in the following commutative diagram:
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(C∗)m T

(C∗)n
π

φ

ψ

Moreover, since both φ and π ◦ ψ are given by Laurent monomial maps, the restriction
φ : (C∗)n → T is a (bijective) bi-holomorphic map. Hence, we have the bi-holomorphic
correspondence between the C∗-zero sets:

ci · xA = 0 for i = 1, . . . , q ⇐⇒

{
zB − 1 = 0

ci · z = 0 for i = 1, . . . , q.

as claimed.

3.2. Toric slicing formulation. From the view point of the above lemma, irreducible
components in V∗(F ) can be sampled through toric versions of linear slices.

Definition 3.3. Given an unmixed Laurent polynomial system in standard form, as given
in (3.1), in x = (x1, . . . , xn), a nonnegative integer d ≤ n, and vectors c∗1, . . . , c

∗
d ∈ (C∗)m, we

define the corresponding rank d toric slicing system to be

(3.2) F (d)(x) =

{
ck · xA for k = 1, . . . , q

c∗k · xA for k = 1, . . . , d

The set V∗0 (F (d)) ⊂ V∗(F ) will be called a rank d sample set of F .

Note that this definition implicitly depends on the choice of the vectors c∗1, . . . , c
∗
d ∈ (C∗)m.

However, this dependence is of little interest here since the choice is always assumed to be
generic in our discussions.

Lemma 3.4. Let F , given in (3.1), be an unmixed Laurent polynomial system in standard
form. If V∗d(F ) is nonempty and reduced for some nonnegative integer d < n, then there is a
nonempty Zariski open set U ⊆ ((C∗)m)d such that for all (c∗1, . . . , c

∗
d) ∈ U , V∗0 (F (d)) consists

of finitely many nonsingular points, and all these points are in V∗d(F ).

Proof. By Lemma 3.2, there is a matrix B ∈ Mm×(m−n)(Z) such that the V∗(F ) ⊂ (C∗)
is bi-holomorphically equivalent to V ′ = V∗(zB − 1,L(z; c1, . . . , cq)) ⊂ (C∗)m. Then each
d-dimensional irreducible component of V∗(F ) corresponds to a d-dimensional irreducible
component of V ′. Under the same bi-holomorphic map, V∗(F (d)) is equivalent to V∗(G(d)),
where

G(d)(z) =


zB − 1

ck · z for k = 1, . . . , q

c∗k · z for k = 1, . . . , d.

Note that V∗(G(d)) is precisely the linear slice of V∗(G) with respect to L(z; c∗1, . . . , c
∗
d). By

the Linear Slicing Theorem (Theorem 2.5 and Proposition 2.6), the isolated zeros of G(d) in
(C∗)n are all nonsingular and are contained in the d-dimensional components of V∗(G).
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In general, if the requirement for V∗d(F ) to be reduced is dropped, V∗0 (F (d)) may contain
singular (non-smooth) points, i.e., points where rankDF (d) < n. Yet, by restriction, the above
constructions can still be applied to each individual reduced irreducible component of V∗d(F ).

Corollary 3.5. Let V be a nonempty and reduced irreducible d-dimensional component of
V∗(F ), then there is a nonempty Zariski open set U ⊆ (C∗)m×d such that for all (c∗1, . . . , c

∗
d) ∈

U , V∗0 (F (d)) ∩ V is nonempty, and it consists of finitely many nonsingular points in V .

These lemmas justified that a rank d sample set of F is indeed a sample set for each
reduced d-dimensional irreducible component of V∗(F ). The subsections that follow aim to
set up an efficient homotopy method for computing each sample set as a direct extension of
the polyhedral homotopy of Huber and Sturmfels. In particular, our goal is to connect all
sample sets through solution paths defined by a single homotopy.

3.3. Square system formulation. In general, the toric slicing system (3.2) (in Defini-
tion 3.3) is a system of q+ d Laurent polynomials in n variables. While it is possible to study
such systems directly, it is much more convenient to turn such system into square systems. In
the following, let r = n − q. As noted in Subsection 2.4, without loss of generality, we only
need to focus on cases where n ≥ q, and hence r ≥ 0. From Theorem 2.8, we can derive the
following result.

Lemma 3.6. If d > r, let Λ = [λi,j ] be a complex n×(d−r) matrix and consider the system
of n Laurent polynomials in n variables

F
(d)
� (x1, . . . , xn) = F

(d)
� (x) =


(
ci +

∑d
k=r+1 λi,kc

∗
k

)
· xA for i = 1, . . . , q(

c∗i +
∑d

k=r+1 λq+i,kc
∗
k

)
· xA for i = 1, . . . , r

For generic choices of Λ, all isolated points V∗(F (d)) are also isolated points in V∗(F (d)
� ).

Furthermore, V∗(F (d)) and V∗(F (d)
� ) have the exact same set of positive dimensional irreducible

components.

This transformation turns a toric slicing system into a square system while capturing all
the C∗-zeros. It is possible for this transformation to introduce extraneous zeros, i.e., isolated

points that are in V∗(F (d)
� )\V∗(F (d)), but they can be filtered out easily. As we shall see, these

extraneous zeros are far from useless. On the contrary, they are crucial in our construction of
homotopy paths that will chain all sample sets together.

In the following, V∗(F (d)
� ) will be referred to as the rank d sample superset of F . Again,

the points in these sets depend on the choices of {c∗k}, but the choices are of little interest as
they are assumed to be generic.

Remark 3.7. In the special case of n = q, i.e., F being a square system, the corresponding
system F (d) can be expressed concisely as

F
(d)
� (x) = (C + ΛC∗)(xA)>
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where C,C∗,Λ are complex matrices of sizes n×m, d×m, and n× d, respectively, given by

C =

c1
...
cn

 , C∗ =

c
∗
1
...
c∗d

 , Λ =

λ11 · · · λ1d
...

. . .
...

λn1 · · · λnd

 .
In this form, it is easy to see that F

(d)
� (x) is exactly a perturbed version of the original system

F in which the coefficient matrix C is replaced by C + ΛC∗ where ΛC∗ is a generic matrix of
rank d. This interpretation justifies the usage of the term “rank” in “rank d sample superset”.

3.4. Stratified polyhedral homotopy. We now construct the homotopy method that can

compute the sample supersets V∗0 (F
(d)
� ), which contains the rank d sample sets of F , for each

d = 1, . . . , n using a single homotopy procedure. The first component in this procedure is the
natural connection between consecutive sample supersets.

Definition 3.8. Given the square system F
(d)
� defined above, we define H(d) : Cn × C→ C,

given by

(3.3) H(d)(x, t) =



(
ci +

d−1∑
k=r+1

λikc
∗
k + tλi,dc

∗
d

)
· xA for i = 1, . . . , q

(
c∗i +

d−1∑
k=r+1

λq+i,kc
∗
k + tλq+i,dc

∗
d

)
· xA for i = 1, . . . , r

Clearly, H(d)(x, 0) ≡ F (d−1)(x) and H(d)(x, 1) ≡ F (d)(x). Furthermore, by restricting t

to the real interval [0, 1], we get a homotopy function between F
(d−1)
� and F

(d)
� since H(d)

is continuous in both x and t. We shall show that the isolated C∗-zeros of H(d) also move
smoothly, as t goes from 1 to 0, forming smooth solution paths in (C∗)n × (0, 1].

Theorem 3.9. For generic choices of c∗k’s and {λi,j}, the zero set of H(d) in (C∗)n × (0, 1]
consists of finitely many smooth solution paths in (C∗)n×(0, 1] emanating from the nonsingular

points of V∗0 (F
(d)
� ) at t = 1, and the set of limit points of these paths in (C∗)n as t→ 0 contains

all nonsingular points in V∗0 (F
(d−1)
� ).

Proof. Define

G(x,p) =



(
ci +

d−1∑
k=r+1

λikc
∗
k + λi,d p

)
· xA for i = 1, . . . , q

(
c∗i +

d−1∑
k=r+1

λq+i,kc
∗
k + λq+i,d p

)
· xA for i = 1, . . . , r

which represents a family of Laurent polynomials systems parametrized by p ∈ Cm that
contains H(d)(x, t) for all t since H(d)(x, t) = G(x, t c∗d). By the Parameter Homotopy The-
orem (Theorem 2.4), for generic choices of p ∈ Cm the total number of nonsingular points
in V∗0 (G(x,p)), as a Laurent polynomial system in x, is finite, and it is the same number,
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say N . The exceptional set Q of the parameters for which the number of nonsingular points
in V∗0 (G(x,p)) is less than N is contained in a proper algebraic set. In particular, at t = 1,
H(x, t) = G(x, c∗d), so for generic choices of c∗d, the total number of starting points, i.e., the

isolated points in V∗(H(d)) = V∗(F (d)
� ) is exactly N .

Our focus is therefore the path of evolution of this family between p = c∗d to p = 0. In
particular, this path can be parametrized as

p(t) = tc∗d = (1− t)0 + tc∗d.

For almost all choices of c∗d, this path avoids the exceptional set Q in the parameter space [40,
Lemma 7.1.2]. Following from the Parameter Homotopy Theorem (Theorem 2.4), as t goes
from 1 to 0, the nonsingular isolated solutions to H(d)(x, t) = 0 form exactly N smooth paths
(smoothly parametrized by t) emanating from the set of isolated points in V∗(F (d)) and reach
all isolated points of V∗0 (F (d−1)) as limit points.

The homotopy continuation procedure that tracks the solution paths defined by H(d) as t
moves from 1 to 0 produces both the rank d−1 sample superset for F and the starting points
for H(d−1). This chain reaction thus can continue until H(r+1) produces the rank r (the lowest
rank) sample superset for F . This is the stratified polyhedral homotopy.

Definition 3.10 (Unmixed stratified polyhedral homotopy). For an unmixed system F (3.1),
in standard form, of q Laurent polynomials in n variables x = (x1, . . . , xn) and generic lifting
function ω : supp(F )→ Q+, we define H : Cn × Cq+1 → C given by

(3.4) H(x, t) =



(
ci +

n∑
k=r+1

tk−rλikc
∗
k

)
· (xA ◦ e−Mt0ω) for i = 1, . . . , q(

c∗i +
n∑

k=r+1

tk−rλq+i,kc
∗
k

)
· (xA ◦ e−Mt0ω) for i = 1, . . . , r

where t = (t0, t1, . . . , tq) and M is a sufficiently large positive real number.

Here, “◦” denotes the entry-wise product between two row vectors of the same length,
which is the group operation for (C∗)m. The constant M ∈ R+ is the same constant used in
(2.1), which can be computed from the Newton polytope of H.

The starting points of the homotopy paths at t = (1, . . . , 1) can be obtained by the same
process that bootstraps the polyhedral homotopy (a brief review of this process is included
in Appendix A, for completeness). Indeed, all C∗-zeros of H(x, (1, . . . , 1)) are isolated and
nonsingular and the total number is exactly

n! vol(conv(supp(F ))),

which is also known as the normalized volume of the common Newton polytope conv(supp(F )).
To obtain sample super set for F of ranks n, n − 1, . . . , n − q, we could apply the standard
homotopy continuation procedure on H along the piecewise linear parameter path

(1, . . . , 1)→ (0, 1, . . . , 1)→ (0, 0, 1, . . . , 1)→ · · · (0, . . . , 0, 1)→ (0, . . . , 0),
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in the t-space, starting from the initial points provided by the bootstrapping process of poly-
hedral homotopy. The parameter path consists of q + 1 piecewise linear segment, and at the
end of each segment, the projection of the solution paths onto the x-coordinates generates the
sample supersets for F of ranks n, n−1, . . . , n−q. Note that this homotopy can be formulated
as a single homotopy function
(3.5)

H∗(x, s) =


H(x, (1− (1− s)(q + 1), 1, 1, . . . , 1) 1 ≥ s > 1− 1/(q + 1))

H(x, (0, 2− (1− s)(q + 1), 1, . . . , 1) 1− 1/(q + 1) ≥ s > 1− 2/(q + 1))
...

...

H(x, (0, . . . , 0, n+ 1− (1− s)(q + 1)) 1− n/(q + 1) ≥ s > 0).

We summarize this algorithm in Algorithm 3.1.

Algorithm 3.1 Unmixed stratified polyhedral homotopy algorithm for regular zeros

Require: An unmixed Laurent system F in standard form, lifting function ω : S → Q+ with
generic images, and generic complex vectors c∗1, . . . , c

∗
n ∈ Cm

Ensure: Returns finite sample sets (Wn, . . . ,W0) such that, for d = 1, . . . , n, Wd intersects
each d-dimensional reduced irreducible component of V∗(F ).

1: Define X̃−1 = PolyhedralBootstrap(F,ω)
2: Define t = (t0, t1, . . . , tq) = (1, 1, . . . , 1)
3: for k = 0, . . . , q do
4: Define Xk = HomotopyContinuation(H, X̃k−1, t; tk : 1→ 0)

5: Define X̃k = {x ∈ Xk | DF
(n−k)
� (x) is nonsingular}

6: Define Wn−k = {x ∈ X̃k | F (n−k)(x) = 0 and rankDF (n−k)(x) = n− k}
7: Let tk = 0
8: end for
9: return (Wn, . . . ,W0)

In this algorithm description, the subroutine PolyhedralBootstrap is responsible for boot-
strapping the polyhedral homotopy method, as described in Subsection 2.1, for a given Laurent
polynomial system and a generic lifting function. That is, it provides the isolated C∗-solutions
to the equation H(x, (1, . . . , 1)) = 0. This process is reviewed in Appendix A. Subroutine Ho-
motopyContinuation is the standard homotopy continuation method. In particular, Homotopy-
Continuation(H, X̃k, t, tk : 1→ 0) tracks the paths defined by the equation H = 0 in Cn×(0, 1]
starting from the points in X̃k at tk = 1 toward tk → 0. Other variables in t = (t0, . . . , tq) are
held constant. The limit points within (C∗)n are collected and returned as the result of this
procedure.

3.5. Numerical considerations. In practice, homotopy continuation methods are gener-
ally implemented as numerical algorithms. Consequently, the sets X̃k in Algorithm 3.1 are
only numerical approximations of the zeros in question, and therefore, the condition that
F (n−k)(x) = 0, in Line 5, and the rank conditions in Lines 5 and 6 must be replaced by
numerically well posed conditions.
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For example, the condition F (n−k)(x) = 0 may be replaced by the numerically meaningful

backward error condition that F
(n−k)
ε (x) = 0 for some threshold ε > 0 and Laurent system

F
(n−k)
ε with the same support such that ‖F (n−k)

ε − F (n−k)‖ < ε.

Similarly, the rank condition for the Jacobian matrices DF
(n−k)
� (x) and DF (n−k)(x) may

be replaced by bounding on the ratio of the maximum and minimum singular values of
DF (n−k)(x). A more robust and elegant solution is to frame these problems as well-studied
rank revealing problems [7].

3.6. Combining steps. Algorithm 3.1 is presented to have the steps operating in serial
along the piecewise linear parameter path. In practice, this arrangement is neither necessary
nor efficient, since users generally have good a priori knowledge or educated guess about the
maximum dimension of the zero sets. At very least, unless the system F = (f1, . . . , fq) in n
variables is trivial, the dimension of its C∗-zero set must be strictly less than n. In this case,
there is no need to directly compute the rank n sample superset, and it is sufficient to track
the solution paths over the modified parameter path that starts with the line segment

(1, . . . , 1)→ (0, 0, 1, . . . , 1)→ · · ·

in Algorithm 3.1, i.e., the line segment given by s 7→ (s, s, 1, . . . , 1). Along this line segment
in the parameter space, the polyhedral homotopy and the perturbation of coefficients are
operating simultaneously, and at the end of this line segment, rank n − 1 sample superset is
produced.

In general, if it is known that the dimension of the C∗-zero set of F is no more than dmax,
then it is sufficient to track the solution paths over the parameter path that starts with the
line segment

(1, . . . , 1)→ ( 0, . . . , 0︸ ︷︷ ︸
dmax+1

, 1, . . . , 1)→ · · ·

At the end of this first segment, rank dmax sample superset is produced which necessarily
contain sample points for each reduced dmax-dimensional irreducible components of V∗(F ).

4. Reducing general cases to standard unmixed cases. The constructions presented so
far requires the target Laurent system to be of a very special form — the “standard unmixed
form” as defined in Definition 3.1. In this section, we describe how the general cases can be
reduced to such special cases. As reviewed in Section 3, conditions 2 and 3 of Definition 3.1
can be satisfied by simple transformations, while condition 1 simply eliminates trivial cases
for which much simpler methods can be used to solve them.

4.1. Lattice reduction for nonstandard unmixed systems. We now briefly outline the
transformation required to satisfy the last condition (Condition 4) in Definition 3.1, i.e. the
torsion-free condition.

Suppose the invariant factors of the support matrix A are d1, . . . , dn 6= 0. Let P ∈
Mn×n(Z) and Q ∈Mm×m(Z) be the unimodular matrices in the Smith Normal Form

PAQ =
[
D 0

]
where D =

d1

. . .

dn
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With these, we define matrices

L = P−1DP ∈Mn×n(Z) Ã =
[
P−1 0

]
Q−1 ∈Mn×m(Z).(4.1)

Then Ã also has full row rank, and we can verify that

PÃQ = P
[
P−1 0

]
Q−1Q =

[
I 0

]
.

That is, systems with support matrix Ã would satisfy the torsion-free condition (Condition 4
in Definition 3.1). We introduce the new variables y = (y1, . . . , yn) via the relation

(4.2) y = xL

By Lemma 2.1, this defines a d-fold cover over (C∗)n, where d = d1 · · · dn = detL. That is,
for each y ∈ (C∗)n, there are precisely d distinct choices of x ∈ (C∗)n that would satisfy the
above equation. With this change of variables

yÃ = (xL)Ã = xLÃ = xP
−1DP [P−1 0]Q−1

= xP
−1[D 0]Q−1

= xA

Therefore, via the change of variables (4.2), we can replace the original Laurent polynomial
system F with support matrix A by a new system in y with support matrix Ã

F̃ (y) =


c1 · yÃ

...

c1 · yÃ

for which the stratified polyhedral homotopy defined in the previous section can be applied,
and the C∗-zero set V∗(F ) is a d-fold cover over V∗(F̃ ) defined by the map (4.2).

4.2. Turning mixed cases into unmixed cases. The description in Section 3 applies only
to unmixed Laurent system, i.e., systems of Laurent polynomials with a common support. This
constraint can be removed easily by considering generic linear combinations of the Laurent
polynomials. We now consider a “mixed” Laurent system F = (f1, . . . , fq) in which the
supports supp(f1), . . . , supp(fq) are not identical. With a generic complex nonsingular q × q
matrix R, a mixed system F = (f1, . . . , fq) in x = (x1, . . . , xn) can be turned into an equivalent
randomized system

FR(x) = RF (x).

Here, F (x) is considered as a column vector. These two systems are equivalent in the sense
that V∗(F ) = V∗(FR). Yet, under the genericity assumption, there is no cancellation of the
terms in RF , and hence FR is unmixed. The stratified polyhedral homotopy construction
described in Section 3 can therefore be applied to the unmixed system FR instead.

Since the support of RF is S1 ∪ · · · ∪Sq, where Si = supp(fi) for i = 1, . . . , q, the number
of paths defined by the stratified polyhedral homotopy, i.e. the BKK bound of FR, is

(4.3) n! vol(conv(S1 ∪ · · · ∪ Sq)).
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In the rest of this paper, this bound will be referred to as the Kushnirenko bound to emphasize
the fact that the unmixed version of the BKK bound is used.

In summary, the framework developed here can also be applied to mixed Laurent systems
simply by considering random linear combinations of the Laurent polynomials in the system.
We conclude this section with a few remarks on the more subtle points.

Remark 4.1. In the case of q = n, i.e. F being a square system, it is well known that

(4.4) n! vol(conv(S1 ∪ · · · ∪ Sn)) ≥ mvol(conv(S1), . . . , conv(Sn)).

This follows from the monotonicity of the mixed volume function. That is, the transformation
F 7→ RF may or may not increase the BKK bound, which is the number of homotopy paths
defined by the stratified polyhedral homotopy. Conditions for the equality of the two was
first discovered by Maurice Rojas in 1994 [31]. Variations of these conditions have since been
rediscovered a couple of times [6, 8]. As listed in Ref. [8], for many important families of
Laurent systems derived from applied sciences, the two sides of (4.4) are identical, and thus
the randomization process does not inflate the number of homotopy paths one has to track
using the unmixed version of the stratified polyhedral homotopy method.

Remark 4.2. It should be noted that the transformation F 7→ RF is not invariant under
lattice translations of the supports, even though the C∗-zero set they define is: For the Laurent
system F = (f1, . . . , fq) and any set of Laurent monomials xv1 , . . . ,xvq , with v1, . . . ,vq ∈
Zn, the Laurent system (xv1 fq, . . . ,x

vq fq) also has the exact same C∗-zero set. Yet, the
randomized system R(xv1 fq(x), . . . ,xvq fq(x))> can be quite different from FR = RF . In
particular, the Kushnirenko bound (4.3), i.e. the number of paths the stratified polyhedral
homotopy will define, may be different depending on the choices of v1, . . . ,vq. Finding the
optimal choice so that n! vol(conv(S1+v1∪· · ·∪Sq+vq)) is minimized is still an open problem.

5. Decomposition of the BKK bound. Bernshtein’s first theorem (Theorem 2.3) states
that for a system of n Laurent polynomials (f1, . . . , fn) in n variables, the number of isolated
zeros in (C∗)n is bounded by the mixed volume mvoln(P1, . . . , Pn), where P1, . . . , Pn are the
Newton polytopes of f1, . . . , fn, respectively. It equals the normalized volume n! vol(P ) in the
unmixed case, i.e., when P1, . . . , Pn = P (Theorem 2.2). This is the BKK bound. Indeed,
for generic coefficients, all C∗-zeros are isolated, and this bound is exact. When positive-
dimensional components are present, however, the number of isolated C∗-zeros will be strictly
less than this bound. A natural question to ask in this situation is whether it is possible to
decompose the BKK bound as a sum of local contributions from each irreducible component

This question mirrors the classical question of how to decompose the Bézout number. As
early as 1680, Newton already observed that the number of isolated intersections between
two planar curves of degrees d1, d2 is bounded by d1 · d2. In 1764, Bézout proved this up-
per bound can be reached if the curves are in general positions, and the same bound applies
to the isolated zeros of a system of n polynomials in CPn. This is the Bézout bound. In-
deed, when there are no positive-dimensional components and intersections are counted with
multiplicities, this bound can always be reached with equality. When positive-dimensional
components are present, however, the naive interpretation of this bound breaks down. The
search for a decomposition of the Bézout bound into local contributions from all components
of a polynomial system thus began.
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Among the great variety of different (but ultimately equivalent) approaches in constructing
such a decomposition of the Bézout bound, the dynamic approach proposed by Severi [34]
and subsequently corrected by Lazarsfeld [20] is the most relevant here. By assigning an
integer multiplicity to each subvariety of the projective zero set of a polynomial system, they
established such a decomposition of the Bézout bound.

The stratified polyhedral homotopy method described above produces a similar assign-
ment of multiplicity as a by-product, at least for unmixed cases involving reduced components.
First, through a routine application of the Parameter Homotopy Theorem (Theorem 2.4), we
can verify that even though the points in the sample sets Wn, . . . ,W0, produced by Algo-
rithm 3.1, depends on the random choices of the coefficients c∗1, . . . , c

∗
n, the number of points

within each sample set remains a constant.

Proposition 5.1. If all components of V∗(F ) of dimension d are (generically) reduced, then
for generic choices of c∗1, . . . , c

∗
n ∈ Cm, the number of distinct points in the rank-d sample set

Wd is a constant that is independent of the choices of c∗1, . . . , c
∗
n.

Since each point in a sample set Wdi is produced by a homotopy path, and the total number
of homotopy paths is the Kushnirenko bound (4.3), by counting the points in each Wdi , we
have a crude extension of the this bound that take into considerations of the contributions
from components of each dimension.

Proposition 5.2. Suppose the C∗-zero set of a Laurent system (f1, . . . , fn) consists of com-
ponents Cd1 , . . . , Cd` 6= ∅ where each Cdi is the union of all di-dimensional components. Let
S = supp(f1) ∪ · · · ∪ supp(fn) and (Cdi) = |Wdi |, then (Cdi) > 0 and

(5.1)
∑̀
i=1

(Cdi) ≤ n! voln(conv(S)).

This bound can be refined significantly. By extending the function  to individual ir-
reducible components in each Cdi via restriction (see the remark in Subsection 7.1 for the
connection to the stronger irreducible decomposition), we have a more refined decomposition
of the Kushnirenko bound in terms of contributions from irreducible components.

In addition, by broadening the concept of sample points and components in the above
proposition, we can reach an exact decomposition of the Kushnirenko bound in certain cases.
First, we can take into consideration end points of homotopy paths that are filtered out by the
rank condition in Line 5 of Algorithm 3.1 (singular sample points) as well as divergent paths
(sample points at toric infinity), and count them with proper multiplicity. Second, we need to
include subvarieties of V∗(f1, . . . , fn) that may or may not be irreducible components into the
left-hand side of (5.1), as long as they attract homotopy paths defined by Algorithm 3.1. In
other words, we need to include “distinguished” subvarieties as constructed in Ref. [14]. The
full development of this theoretical aspect is outside the scope of this paper, which focuses on
the numerical aspect of this problem. We will, instead, illustrate the exact decomposition of
the BKK bound through a few concrete examples in Section 6 (e.g., equation (6.2)).

6. Examples. In this section, we present results from numerical experiments in applying
the proposed algorithm to compute sample points of positive dimensional C∗-solution sets of
some well known Laurent polynomial systems.
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All experiments are carried out with a proof-of-concept implementation that uses libDH [9]
as the path tracker which utilizes GPU acceleration. For a system in n unknowns, we use the
stratified polyhedral homotopy of type-(n− 1, n− 2, . . . , 1, 0) to compute sample sets (which
ignores the possibility of n-dimensional components).

Internally, calculations, with few exceptions that will be noted below, are carried out
strictly in double-precision floating point numbers, in order to test the robustness of the
proposed numerical algorithm. Therefore, in the following, words such as “on”, “in”, and
“reach” should be interpreted as points or homotopy paths being sufficiently close to points
or positive-dimensional components up to a tolerance appropriate for double-precision floating
point calculations. Since the goal is to verify the expected behavior against known solution
sets, no certification of the solutions are performed.

6.1. The running example. In the running example (Example 1.1) we considered the
polynomial system

F (x1, x2) =

{
(x2

1 + x2
2 − 9)(x1 + x2 − 3)

(x2
1 + x2

2 − 9)(x1 − x2 − 1).

Its C∗-zero set V∗(F ) consists of the 1-dimensional irreducible component Q = V∗(x2
1 +x2

2−9)
and the isolated and nonsingular point P = (x1, x2) = (2, 1) 6∈ Q. Both components are
(generically) reduced.

It is easy to verify that the convex hull of the union of the supports is the simplex defined
by {(0, 0), (3, 0), (0, 3)}, which has normalized volume of 9. That is, its Kushnirenko bound is
9. Therefore, the stratified polyhedral homotopy defines 9 homotopy paths.

• At the end of the first stage of the homotopy, 6 paths reach 6 (nonsingular) rank-1
sample points (each reached exactly once) inside the 1-dimensional component Q.
• The remaining 3 paths continue onto the second stage, and one of them reaches one

(nonsingular) rank-0 sample point, which coincide with the only isolated zero P =
(2, 1). The remaining two paths converge to points in Q or its projective closure.

This shows that by following the homotopy paths defined by a single homotopy, both
sample points of 1-dimensional component and the isolated zero can be reached.

6.2. Algebraic Kuramoto equations on homogeneous networks. The Kuramoto model
emerged from the study of networks of oscillators, which can be modeled as collections of points
on the complex plane circling 0 while pulling on one another. They have found many real-world
applications. Kuramoto proposed a simple yet illuminating dynamical system governed

(6.1) θ̇i = ωi −
∑
j∼i

kij sin(θi − θj) for i = 0, 1, . . . , N − 1.

Here, N is the number of oscillators, which are labeled as i = 0, 1, . . . , N − 1. θi is the phase
angle of the i-th oscillator, which describe its state, and ωi is its natural frequency (relative
to the mean frequency). i ∼ j indicates oscillators i and j are coupled, in which case the
coupling coefficient kij = kji quantifies how strongly they influence one another. Due to the
inherent rotational invariance, we can fix θ0 = 0, and discard the equation for i = 0.

Fundamental to the study of this model is the problem of finding frequency synchronization
configurations, which are configurations (θ1, . . . , θN−1) of the network for which θ̇i = 0 for all
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i = 1, . . . , N − 1, i.e., the equilibria of (6.1). Though the equilibrium equation for (6.1) is not
algebraic, with the change of variables xi = eiθi , the synchronization configurations can be
described by the system of Laurent polynomial equations

0 = ωi −
∑
i∼j

kij
2i

(
xix
−1
j − xjx

−1
i

)
for i = 1, . . . , N − 1.

This is the algebraic Kuramoto equation. Its Bézout number and bi-homogeneous Bézout
number are 22(N−1) and

(2(N−1)
N−1

)
, respectively [2]. Its Kushnirenko bound and BKK bound

are identical, and it can be much lower than the Bézout numbers for sparse networks.
The network is said to be homogeneous if ωi = 0 for all i = 0, . . . , N−1. This is the special

case we shall consider here, since it was shown in Refs. [28] that under the homogeneity assump-
tion, for specific choices of the coupling coefficients {kij}, there can be positive-dimensional
solution sets.

6.3. The 4-cycle network. For a homogeneous network of 4 oscillators that form a 4-cycle,
the corresponding algebraic Kuramoto system is given by

FC4 =


− (x1/x0 − x0/x1)− (x1/x2 − x2/x1)

− (x2/x1 − x1/x2)− (x2/x3 − x3/x2)

− (x3/x2 − x2/x3)− (x3/x0 − x0/x3) ,

where x0 = 1 is the constant that corresponds to the reference phase of the system. The
C∗-zero set V = V∗(FC4) contains two nonsingular isolated zeros V0 = {(1, 1, 1), (−1, 1,−1)}.
There are also three 1-dimensional components parametrized by the monomial maps

x1(λ) = (−2iλ,−1, 2iλ) , x2(λ) =

(
2iλ,−1,

1

2iλ

)
, x3(λ) =

(
1/2iλ,

−1

4λ2
,
−1

2iλ

)
,

respectively. In addition, there are two embedded points E1 = (−i,−1, i), E2 = (i,−1, i)
inside the 1-dimensional components. Indeed, they are the intersections of V1,1, V1,2, V1,3. The
existence of positive-dimensional components was discovered by Lindberg, Zachariah, Boston
and Lesieutre. Detailed analysis of the solutions, including their stability properties, was
provided by Sclosa [33]. Here, we utilize these existing knowledge to verify the expected
behavior of the stratified polyhedral homotopy method.

The Kushnirenko bound of this system is 12, which is identical to its BKK bound [10, 8].
Therefore, the stratified polyhedral homotopy defines 12 homotopy paths.

Remark 6.1. It is worth noting the significant advantage of the proposed stratified polyhe-
dral homotopy method over homotopy methods whose complexity is linear in Bézout bounds.
The Bézout number of this system is 26 = 64, while the bi-homogeneous Bézout number is(

6
3

)
= 20. The BKK bound is only 12. Indeed, as noted in Ref. [10], the ratio between either

Bézout number and the BKK bound goes to ∞ as N →∞.

• At the end of the first stage of the homotopy, no rank-2 sample points are produced,
which signifies that there are no 2-dimensional components in the C∗-zero set of this
system. All 12 paths thus continue to the next stage.
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• At the end of the second stage, 6 of the 12 paths reach 6 (nonsingular) rank-1 sam-
ple points inside the 1-dimensional components, two sample points on each of the
component V1,1, V1,2, V1,3. The remaining 6 paths continue to the next stage.
• At the end of the third stage, 2 of the 6 remaining paths converge to the two nonsingu-

lar isolated zeros (1, 1, 1) and (−1, 1,−1), respectively. The rest of the paths converge
to two of the embedded points E1 and E2 (each reached twice).

In this case, there are no divergent paths (i.e., no paths escape (C∗)3), and thus, by counting
the number of paths reaching each component, include the two embedded points, we have a
full decomposition of the BKK bound into the local contributions from 7 components:

(6.2) mvol(N1,N2,N3) = vol3(conv(N1 ∪N2 ∪N3)) = 12 = 2 + 2 + 2︸ ︷︷ ︸
1-dimensional
components

+ 1 + 1︸ ︷︷ ︸
Isolated
points

+ 2 + 2︸ ︷︷ ︸
Embedded

points

,

where N1,N2,N3 are the Newton polytopes of three equations, respectively. This shows that
the bound given in (5.1) may become an equality when all “distinguished” components are
taken into consideration, thereby provides an exact decomposition of the BKK bound.

6.4. The 6-cycle network. Similar to the formulation above, the algebraic Kuramoto
system for the 6-cycle graph contains 5 equations in 5 complex variables. It is shown in
Ref. [11] that by picking coupling coefficients kij = ±s for some s ∈ C∗ with an odd number
of negative choices, the resulting Laurent system has 10 different 1-dimensional components,
each having a monomial parametrization similar to those given above. Here, we choose kij = 1
for {i, j} 6= {0, 1} and k01 = k10 = −1. The corresponding Laurent system is

F (x1, x2, x3, x4, x5) =



+(x1/x0 − x0/x1)− (x1/x2 − x2/x1)

−(x2/x1 − x1/x2)− (x2/x3 − x3/x2)

−(x3/x2 − x2/x3)− (x3/x4 − x4/x3)

−(x4/x3 − x3/x4)− (x4/x5 − x5/x4)

−(x5/x4 − x4/x5)− (x5/x0 − x0/x5),

where x0 = 1 is the constant corresponds to the reference phase as before. The Kushnirenko
bound of this system is 6 ·

(
6−1

b(6−1)/2c
)

= 60. Therefore, the stratified polyhedral homotopy

method defines 60 paths (in contrast with the Bézout number of 1024 or the bi-homogenous
Bézout number of 252).

• No rank-d sample points are produced for all d > 1.
• 20 paths reach 20 (nonsingular) rank-1 sample points on the 1-dimensional components

with two sample points on each component.
• The remaining 40 homotopy paths continue on and they reach isolated zeros of F as

well as embedded points.
Together, these results provide numerical verifications of the results developed in Ref. [11].

Indeed, they provide strong numerical evidence suggesting that the positive-dimensional com-
ponents described in [11, Proposition 5.2] are the only positive-dimensional components.
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6.5. Nested distinguished components. In Ref. [3], the polynomial system

F (x, y, z) =


(xy − z)(x− y)(x+ y − z)
(xy − z)(xy − z + (x− y)(x+ 2y − 3z))

(xy − z)(xy − z + (x− y)(2x− 3y + z))

is used as an example. The C∗-zero set of F consists of a quadratic surface Q = V∗(xy−z) and
the isolated point P = (2/11, 10/11, 12/11) 6∈ Q. There is also a distinguished 1-dimensional
component C = V∗(x − y, xy − z) that is contained in Q. Let S1, S2, S3 be the supports of
the three Laurent polynomials in this system, then the Kushnirenko bound is vol3(conv(S1 ∪
S2 ∪ S3)) = 12. Therefore, the stratified polyhedral homotopy method defines 12 paths.

• At the end of the first stage, 11 paths converge to points in Q. However, not all of
them produce nonsingular rank-2 sample points. Among them, two pairs of paths
converge to two points in C (each reached twice).
• 1 path continue on and converge to P .

The important observation is that the existence of such a nested distinguished compo-
nent does not prevent the stratified polyhedral homotopy from reaching nonsingular sample
points for the 2-dimensional component and the isolated zero. Indeed, such a 1-dimensional
distinguished component contained inside a 2-dimensional distinguished component can still
be sampled, if we take into consideration the singular sample points.

6.6. Cyclic-4 system. The “Cyclic-n” family of polynomial systems have been used as
standard test cases relating to solving polynomial systems. Among this family, the “Cyclic-4”
system is the smallest system that has a positive-dimensional zero set. It is given by

F (x1, x2, x3, x4) =


x1 + x2 + x3 + x4

x1x2 + x2x3 + x3x4 + x4x1

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2

x1x2x3x4 − 1.

Its C∗-zero set consists of two one-dimensional components as well as 8 embedded points.
The Kushnirenko bound of this system is 22. Therefore, the stratified polyhedral homotopy
method defines 22 paths.

• No (nonsingular) rank-d are produced for d > 1. This agrees with the fact that there
are no components in V∗(F ) of dimension greater than 1.

• At least 4 (nonsingular) rank-1 sample points are produced, two on each of the 1-
dimensional components. In addition, 2 paths reach end points that are numerically
singular (the condition number of DF 1

� exceeds 106).
• No (nonsingular) rank-0 sample point is produced. But 16 paths reach the 8 singular

embedded points of V∗(F ). Each is reached twice.
This example gives a clear illustration of the strength of the stratified polyhedral homotopy

over the original polyhedral homotopy. When the original polyhedral homotopy is applied
directly to solve this system, only the 8 embedded points are reached, which are singular
zeros of V∗(F ). In contrast, the stratified polyhedral homotopy method produces numerically
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nonsingular sample points on each of the 1-dimensional components, which can be used as
input for higher level algorithms (e.g., irreducible decomposition, as noted in Subsection 7.1).

7. Concluding remarks. The proposed stratified polyhedral homotopy method computes
a special type of sample points for all reduced irreducible components of the C∗-zero sets of a
Laurent polynomial system. More specifically, when applied to a Laurent polynomial system
F in n complex variables, the proposed homotopy defines a finite number of piecewise smooth
homotopy paths in (C∗)n (or a suitable compactification of it) that pass through finite sample
sets Wn,Wn−1, . . . ,W1,W0 (which may be empty) such that Wd contains at least one point
from each d-dimensional reduced irreducible component of the C∗-zero set of F . Moreover,
such sample points are smooth points in the sense that the nullity of the Jacobian matrix of F
at these sample points match the local dimensions of the components there. This smoothness
property is important, as it enables these sample points to generate additional information
about the C∗-zero set of F through higher level algorithms in numerical algebraic geometry.
We conclude with a few remarks on these higher level algorithms that can use sample points
produced by the proposed stratified polyhedral homotopy as input.

7.1. From sample sets to irreducible decomposition. At each iteration of Line 6 of
Algorithm 3.1, a finite set of points Wd is produced. Collectively, they form a numerically
well-behaving representations of the d-dimensional components Vd of the C∗-zero set V∗(F ) of
F . Therefore, the production of the sample sets Wn,Wn−1, . . . ,W1,W0 is a numerical equiv-
alence of decomposing V∗(F ) according to the dimensions of its components. A more refined
decomposition is the irreducible decomposition. In particular, the d-dimensional component
Vd may be further decomposed into its irreducible components

Vd = Vd,1 ∪ Vd,2 ∪ · · · ∪ Vd,md
.

Under the assumption that these components are reduced, the numerical equivalence of this
decomposition will be a partition of the rank d sample set Wd

Wd = Wd,1 ∪Wd,2 ∪ · · · ∪Wd,md

such that Wd,i ⊂ Vdi for each i = 1, . . . ,md. In principle, this partition may be produced
through a monodromy algorithm [36]. The effectiveness and efficiency of such an approach
will be important questions for future studies.

7.2. Sampling nonreduced components. Our discussions focused only on (generically)
reduced components. In general, the C∗-zero set of a Laurent system F , may contain nonre-
duced components. That is, over a component V of the zero set, it is possible for the Jacobian
matrix DF to have a nullity that is strictly greater than the dimension of a component V at
every point. Such nonreduced component may result in isolated but singular end points in
the set Xk in Line 4 of Algorithm 3.1. These points are filtered out in Line 5. Consequently,
the proposed algorithm simply ignores the existence of nonreduced components.

The main reason for ignoring such nonreduced component is that singular end points
in Line 4 of Algorithm 3.1 (i.e., points in Xk \ X̃k) may become start points of “singular”
homotopy paths in the homotopy continuation step in Line 4 for which basic path tracking
algorithm cannot be applied.
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While it is possible to applied more advanced algorithms to tracking such “singular”
homotopy paths [37] and potentially reach singular sample points that serve as numerical
representations of certain nonreduced components, within the numerical algebraic geometry
community, however, it is much preferred to replace the equations that define the same zero
set so that the nonreduced structure on the zero set disappears. These are special form
of regularization processes. The most commonly used is a family of closely related symbolic
preprocessing step collectively known as deflation [13, 22]. Combining the algorithm proposed
here with deflation steps will be a natural extension that should be investigated.
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by Maurice Rojas on the monotonicity of the mixed volume function.
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Appendix A. Bootstrapping unmixed polyhedral homotopy. For completeness, we
briefly outline, without proofs, the main procedure for computing the starting solutions for the
homotopy (3.4) (Definition 3.10), which are the nonsingular isolated zeros of H(x, (0, . . . , 0)).
Without loss of generality, it is sufficient to assume F is an unmixed square system, and its
support is in standard form (as defined in Definition 3.1). Under the genericity assumption for
ω, the regular subdivision of S induced by the lifting function ω is a triangulation. That is, the
projection of the lower hull of the lifted point configuration Ŝ = {(a, ω(a)) | a ∈ S} ⊂ Qn+1

form a triangulation for S. Let

T = {α ∈ Qn | (α, 1) is an inner normal of a facet of Ŝ}.

Then for each α ∈ T , the minimum of the linear functional 〈•, (α, 1)〉 is achieved at exactly
n + 1 points in Ŝ. Let ∆(α) be the projection of this subset of n + 1 points in S. Since
the columns in the support matrix A and the coefficient matrix C (as used in Remark 3.7)
correspond to points in S, we shall use the notations A∆(α) and C∆(α) for the submatrice of
A and C, respectively, consisting of columns corresponding to the subset ∆(α) ⊂ S. With
these, we define

(A.1) F (α)(x) = C∆(α) (xA∆(α))>,

which is a square system of n Laurent polynomials each having exactly n + 1 terms. In
Ref. [23], A. Leykin, J. Verschelde, and Y. Zhuang named such a system a “simplex system”,
since its Newton polytope is a simplex. The numerical issues involved in solving such a
system is analyzed in the same article, and more detail is included in the Ph.D. thesis of
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Y. Zhuang [43]. Through a toric transformation induced by the vector α, the solution to
such a simplex system can be used as numerical approximations for the starting points of the
homotopy paths for Algorithm 3.1.
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