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Solution sets of systems of binomial equations are of great interest 
in applied mathematics. For both theoretic and applied purposes, 
the degree of a solution set (its maximum number of isolated inter-
sections with an affine space of complementary dimension) often 
plays an important role in understanding its geometric structure. 
This paper proposes a specialized parallel algorithm for computing 
the degree on GPUs that takes advantage of the massively parallel 
nature of GPU devices. The preliminary implementation shows re-
markable efficiency and scalability when compared to the closest 
CPU-based counterpart. As a case study, the algorithm is applied to 
the master space problem of N = 1 gauge theories. The GPU-based 
implementation achieves nearly 30 fold speedup over its CPU-only 
counterpart enabling the discovery of previously unknown results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of solving a system of polynomial equations is an important problem in compu-
tational mathematics. Of special interest is the problem of solving systems of binomial equations 
(or simply binomial systems) for they appear naturally in many applications and specialized algo-
rithms exist (e.g., Kahle, 2010). In many applications, only the solutions of a binomial system for 
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which no variable is zero are needed. That is, we are only interested in solutions inside (C∗)n where 
C∗ = C \ {0}. The collection of such solutions is known as the C∗-solution set and will be the focus 
of this article. Such a C∗-solution set of a binomial system has a well defined dimension and can be 
decomposed into “irreducible components”. Of particular interest in the context of the present con-
tribution are the components of positive dimension (i.e., nonisolated solutions). The degree of each 
component of positive dimension is the maximum number of points in the intersection of the com-
ponent with an affine linear space of complementary dimension.

Based on a class of algorithms for the related problem of “mixed volume computation” the present 
article proposes a specialized numerical parallel algorithm for computing the degree of a C∗-solution 
set of a system of binomial equations. The novel features of this algorithm include

• Specially designed for GPU (graphics processing unit) devices, this algorithm takes advantage of 
the massively parallel nature of GPUs;

• Utilizing the special structure of binomial systems, this algorithm employs techniques that are 
not available (or not known to be available) for the more general “mixed volume computation” 
which greatly improves the overall efficiency;

• Based on a formulation of the degree as the volume of a lattice polytope, the algorithm computes 
the degree without using any sample points of the solution set (e.g. “witness sets” in Numerical 
Algebraic Geometry).

As a case study, we applied this algorithm to a family of binomial systems coming from particle 
physics, called the master space of N = 1 gauge theories. The preliminary implementation for GPU 
devices built on top of the NVidia CUDA framework has already shown promising results. In particular, 
it outperforms existing CPU-based programs in both absolute efficiency and parallel scalability by a 
large margin, and it produced previously unknown results. Remarkably, with multiple GPU devices 
(on the same computer), the GPU based implementation exhibits much better performance, in many 
cases, than small to medium sized computer clusters.

Though the main focus of this article is the parallel algorithm that directly computes the degree 
of the C∗-solution set of a binomial system without using any sample points (e.g. “witness points”), 
this algorithm actually generates, as by-products, information from which “witness sets” of each com-
ponent can be computed indirectly via a specialized homotopy continuation method. Developed in 
Sommese and Wampler (1996) as the numerical representations of irreducible components of alge-
braic sets, “witness sets” are, in a sense, the fundamental data structure in the field of Numerical 
Algebraic Geometry (Sommese and Wampler, 1996). The secondary contribution of this article is an 
indirect homotopy-based method for computing the “witness set” of each irreducible component of a 
positive dimensional C∗-solution set of a binomial system. The potential benefit of this approach is 
that the number of homotopy paths required to compute a witness set (of a component) is exactly 
the number of witness points in the set. That is, each homotopy path yields a unique witness point 
and no paths diverge.

This article is structured as follows: First, necessary notation and concepts are introduced. In 
particular, we shall review basic geometric properties of the C∗-solution set defined by a binomial 
system. Then in §3 we propose a highly scalable parallel algorithm for computing the degree of the 
C∗-solution set of a binomial system. Aiming to be self contained, the algorithm is presented without 
direct reference to related concepts in “mixed volume computation”. In §5, however, this close tie is 
discussed in detail. The construction of the specialized homotopies for computing witness sets is de-
scribed in §4. The case study, of the master space of N = 1 gauge theories, arising from string theory, 
is presented in §6, and we show the previously unknown results obtained by the proposed parallel 
algorithm. Certain technical but necessary results are included in the appendix for completeness.

2. Laurent binomial systems and their solution sets

We first review necessary concepts and notation. For positive integers m and n, let Mn×m(Z)

denote the set of all n ×m integer matrices. A square integer matrix is said to be unimodular if its de-
terminant is ±1. Note that such a square matrix A ∈ Mn×n(Z) has a unique inverse A−1 = 1

det A adj A
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that is also in Mn×n(Z), where adj A is the adjugate matrix of A. The n ×n identity matrix in Mn×n(Z)

is denoted by In .
The theoretical tools involved in this article are more naturally developed in the context of the 

more general “Laurent binomial systems” where negative exponents are allowed. For variables x =
(x1, . . . , xn), a Laurent monomial in x is an expression of the form xa1

1 · · · xan
n where a1, . . . , an ∈ Z

(which may be zero or negative). For convenience, we shall write a = (a1, . . . , an)� ∈ Zn and use the 
“vector exponent” notation

xa = (x1, . . . , xn)

⎛
⎜⎝

a1

...
an

⎞
⎟⎠

= xa1
1 · · · xan

n

to denote a Laurent monomial. Similarly, for an integer matrix A ∈ Mn×m(Z) with columns 
a(1), . . . , a(m) ∈ Zn , the “matrix exponent” notation will be used for an m-tuple of Laurent mono-
mials:

xA = x

(
a(1) · · · a(m)

)
:= (xa(1)

, . . . , xa(m)

). (1)

This notation is particularly convenient since the familiar identities xIn = x and (xA)B = xAB still hold. 
Each matrix A ∈ Mn×m(Z) induces a function from (C∗)n to (C∗)m given by x �→ xA . Of particular im-
portance is the function induced by a unimodular matrix A ∈ Mn×n(Z) since A−1 is also in Mn×n(Z), 
and hence functions x �→ xA and x �→ xA−1

are the inverses of each other ((xA)A−1 = xA A−1 = xIn = x).
A Laurent binomial is an expression of the form c1xα + c2xβ for some c1, c2 ∈ C∗ and α, β ∈ Zn . 

This article focuses on the properties of the solution set of systems of Laurent binomials equations, or 
simply Laurent binomial systems, over (C∗)n . Stated formally, given exponent vectors α(1), . . . , α(m),

β(1), . . . , β(m) ∈ Zn and the coefficients ci, j ∈ C∗ , the goal is to describe the set of all x ∈ (C∗)n that 
satisfies the system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
c1,1 xα(1) + c1,2 xβ(1) = 0

...

cm,1xα(m) + cm,2xβ(m) = 0.

(2)

Since only the solutions in (C∗)n are concerned, this system is clearly equivalent to

(xα(1)−β(1)

, . . . , xα(m)−β(m)

) = (−c1,2/c1,1, . . . ,−cm,2/cm,1).

With the more compact “matrix exponent” notation in (1), this system can simply be written as

xA = b or equivalently xA − b = 0 (3)

where the integer matrix A ∈ Mn×m(Z), having columns α(1) − β(1), . . . , α(m) − β(m) , represents the 
exponents appeared in the Laurent monomials and the vector b = (−c1,2/c1,1, . . . , −cm,2/cm,1)

� ∈
(C∗)m collects all the coefficients. The solution set of (3) over (C∗)n shall be denoted by

V∗(xA − b) = {x ∈ (C∗)n | xA − b = 0}. (4)

Note that V∗(xA − b) is quasi-projective since it is the complement of the (complex) algebraic set 
Cn \ (C∗)n = {(x1, . . . , xn) | x1 · · · xn = 0} within the (complex) solution set of the original binomial 
system (2). In the context of algebraic geometry, such a set has a well defined dimension and ir-
reducible decomposition (its decompositions as a union of “irreducible components”). Moreover, the 
concept of degree can be defined for each of its irreducible component (which depends on the defin-
ing equation xA − b). In the following, we shall review the main structural theorem that ties these 
properties directly to the properties of the matrix A. Since the explicit “global parametrization” (to be 
described in Proposition 1) is needed in the formulation of the degree computation problem, a brief 
derivation of these results is therefore included. A more detailed summary can be found in the article 
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by Chen and Li (2014). In depth theoretical discussions can be found in standard references such as 
Cox et al. (2011), Eisenbud and Sturmfels (1996), Fulton (1993), Miller and Sturmfels (2005), Sturmfels
(1997). Certain computational aspects have been studied in Kahle (2010), Kahle and Miller (2014).

An important tool in understanding the structure of V∗(xA − b) is the Smith Normal Form (Smith, 
1861) of the exponent matrix A ∈ Mn×m(Z): there are unimodular square matrices P ∈ Mn×n(Z) and 
Q ∈ Mm×m(Z) such that

P A Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
. . .

dr

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn×m(Z) (5)

with nonzero integers d1 | d2 | · · · | dr for r = rank A. Here, a | b means a divides b as usual. The 
nonzero diagonal elements d1, . . . , dr are unique up to the signs and known as invariant factors of A. 
The transformation matrices P and Q , however, are not unique in general. Although they are to used 
in following structural description of V∗(xA −b), the description itself is independent from the choices 
of P and Q . This subtle point will be clarified in Remark 4.

Let Pr ∈ Mr×n(Z) and P0 ∈ M(n−r)×n(Z) be the top r rows and the remaining n − r rows of P in 
(5) respectively. Similarly, let Q r ∈ Mm×r(Z) and Q 0 ∈ Mm×(m−r)(Z) be the left r columns and the 
remaining m − r columns of Q respectively. With these notations, the Smith Normal Form of (5) of A
can be written as(

Pr

P0

)
A
(

Q r Q 0
)=

(
D 0
0 0

)
(6)

with D = diag(d1, . . . , dr) ∈ Mr×r(Z) and 0’s representing zero block matrices of appropriate sizes. 
With this we can transform the binomial system xA = b into a form from which the structure of the 
C∗-solution set can be easily extracted.

Since P and Q are both unimodular the maps z �→ zP and y �→ y Q are bijections on (C∗)n and 
(C∗)m respectively. Therefore, as far as the C∗-solution set is concerned, the original system xA = b
is equivalent to (xA)Q = xA Q = bQ . Similarly, the solution set remains equivalent after the change of 
variables x = zP , which produces

(zP )A Q = zP A Q = z

(
D 0
0 0

)
= (z

(
D
0

)
, z

(
0
0

)
) = bQ = (bQ r ,bQ 0) .

Since D = diag(d1, . . . , dr) ∈ Mr×r(Z), this system can be decomposed into a combined system

(zd1
1 , . . . , zdr

r ) = bQ r (7)

1 = bQ 0 (8)

zr+1, . . . , zn : free (9)

where (8) appears when r < m with 1 = (1, . . . , 1) ∈ (C∗)m−r , and (9) appears when r < n. The word 
“free” in (9) means the system imposes no constraints on the n − r variables zr+1, . . . , zn . It is clear 
that if r < m, then the system is inconsistent unless 1 = bQ 0 . If the system is consistent (namely, 
(8) holds), then the solutions to (7) are exactly⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z1 = e2k1π/d1ζ1 for k1 = 0, . . . ,d1 − 1

z2 = e2k2π/d2ζ2 for k2 = 0, . . . ,d2 − 1
...

zr = e2krπ/dr ζr for kr = 0, . . . ,dr − 1

(10)
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where each ζ j is a fixed choice of the d j-th root of the j-th coordinate of bQ . Clearly, all of 
them are isolated and the total number of these solutions is precisely 

∏r
j=1 |d j | = | det D|. If r < n, 

then the C∗-solution set of the decomposed system (7)–(9) breaks into “components” of the form 
{(e2k1π/d1ζ1, . . . , e2krπ/dr ζr, zr+1, . . . , zn) : (zr+1, . . . , zn) ∈ (C∗)n−r}, and they are in one-to-one corre-
spondence with solutions in (10). Since each component is parametrized by the n − r free variables 
zr+1, . . . , zn , it is smooth and of dimension n − r.

To translate the above description of the (C∗)n-solution set of the decomposed system (in z) into 
a description of the original solution set V∗(xA − b), one may simply apply the change of vari-
ables x = zP . Note that this map and its inverse z = xP−1

are both given by monomials (bi-regular
maps (Hartshorne, 1977)), the basic properties of the solution set, such as, the number of solution 
components, their dimensions, and smoothness are therefore preserved. To summarize, under the as-
sumption that the solution set is of positive dimension (that is r < n), the above elaborations assert 
the following proposition.

Proposition 1 (Global parametrization (Eisenbud and Sturmfels, 1996; Kahle, 2010; Sturmfels, 1997)). For the 
solution set V∗(xA − b) in (C∗)n, let P , Q , Q 0 and D be those matrices that appeared in the decompositions 
of A in (5) and (6). Assume r := rank A < n.

If r < m and 1 �= bQ 0 then the binomial system is inconsistent, and therefore V∗(xA − b) =∅.
Otherwise (if r = m or 1 = bQ 0 ) V∗(xA − b) consists of 

∏r
j=1 |d j | = | det D| components Vk1,...,kr for 

k1 ∈ {0, . . . , |d1| − 1}, . . . , kr ∈ {0, . . . , |dr | − 1}. Each component Vk1,...,kr is smooth of dimension n − r, and 
it is parametrized by the smooth global parametrization φk1,...,kr : (C∗)(n−r) → Vk1,...,kr given by

φk1,...,kr (t1, . . . , tn−r) = (e2k1π/d1ζ1, . . . , e2krπ/dr ζr, t1, . . . , tn−r)
P (11)

where each ζ j is a fixed choice of the d j-th root of the j-th coordinate of bQ .

Here we focus on the positive dimensional case. That is, in the following we restrict our attention 
to cases where n − r > 0 and the system is consistent. In this situation, for both theoretical interests 
and demands from concrete applications, one often wishes to identify another important property: the 
degrees of each component in V∗(xA − b). Degree is a classic concept developed for plane algebraic 
curves. For example, the quadratic equation y − x2 = 0 defines a curve of degree 2, i.e., the parabola. 
The generalized notation of degree for irreducible algebraic sets is usually formulated algebraically via 
Hilbert Polynomials. In this article, following the common practice of Numerical Algebraic Geometry, 
we shall take a geometric approach: Let V = Vk1,...,kr be a component of V∗(xA − b) for some fixed 
choice of k1, . . . , kn as defined in Proposition 1. The number of isolated intersection points between 
V and a “generic” affine space of complementary dimension is a fixed number, and this number is 
the degree of V , denoted by deg V .

Stated more precisely, let Gr be the set of all affine space in Cn of dimension r = n − dim V . Then 
it can be shown that in a fixed open and dense subset of Gr , all the affine spaces intersect with V
at a fixed number of isolated points. This geometric interpretation of degree is explained in Fulton
(1998), Hartshorne (1977), Sommese and Wampler (2005).

From a computational standpoint, a generic affine space in Gr can be represented by the solution 
set of a system of d := n − r linear equations with generic coefficients.1 Therefore deg V is precisely 
the number of points x = (x1, . . . , xn) ∈ V that satisfies the linear system

1 The representation of affine spaces by linear systems of equations is clearly not a one-to-one correspondence. E.g. for a 
matrix L, Lx + b = 0 and GLx + Gb = 0 define the same affine space for any nonsingular square matrix G of the appropriate 
dimension. The refined parametrization of the affine spaces is given the Grassmannian. However, in the current context, the 
representation by linear systems is sufficient as the fixed Zariski open and dense subset of r-dimensional affine spaces from 
which the deg V can be defined also corresponds to a Zariski open and dense subset among the linear systems (in terms of 
their coefficients).
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⎧⎪⎪⎨
⎪⎪⎩

c11x1 + c12x2 + · · · + c1nxn = c10

...

cd1x1 + cd2x2 + · · · + cdnxn = cd0

(12)

where ci j ’s for i = 1, . . . , d and j = 0, . . . , n are generic complex numbers (that is, (ci j)i=1,...,d, j=0,...,n

belongs to a Zariski open and dense subset of Cd×(n+1)). But recall that the set V = Vk1,...,kr is pre-
cisely the image of the injective map

φk1,...,kr (t1, . . . , td) = (e2k1π/d1ζ1, . . . , e2krπ/dr ζr, t1, . . . , td)
P

in Proposition 1. If we let ξ = (e2k1π/d1ζ1, . . . , e2krπ/dr ) and t = (t1, . . . , td) then

φk1,...,kr (t) = (ξ, t)

(
Pr
P0

)
= ( ξ p(1)

r t p(1)
0 , . . . , ξ p(n)

r t p(n)
0 )

where for each j = 1, . . . , n, p( j)
r and p( j)

0 are the j-th columns of Pr and P0 respectively. In other 

words, V has the global parametrization xi = ξ p(1)
r t p(1)

0 . Therefore the intersections between V and 
the generic affine space defined by (12) are precisely the solutions of the polynomial system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c11 ξ p(1)
r t p(1)

0 + c12 ξ p(2)
r t p(2)

0 + · · · + c1n ξ p(n)
r t p(n)

0 = c10

...

cd1 ξ p(1)
r t p(1)

0 + cd2 ξ p(2)
r t p(2)

0 + · · · + cdn ξ p(n)
r t p(n)

0 = cd0

By letting c′
i j := ci jξ

p( j)
r and c′

i0 := ci0 for each i = 1, . . . , d and j = 1, . . . , n, the above is a system of 
d Laurent polynomial equations in variables t = (t1, . . . , td) with coefficients c′

i j and the same set of 

monomials t p( j)
0 , . . . , t p( j)

0 .

Note that the transformation from (ci j) to (c′
i j), given by c′

i j := ci jξ
p( j)

r ∈ C for j �= 0, is a non-
singular linear transformation which can be represented by a diagonal matrix with nonzero entries 
ξ p( j)

r (since ξ ∈ (C∗)r ). This linear transformation preserves the Zariski topology. In other words, the 
“generic” choices of (ci j) translate to “generic choices” of (c′

i j). We summarize the above elaboration 
into the following proposition.

Proposition 2 (Degree via affine space cut). Assuming V∗(xA − b) is d-dimensional, then the degree of a 
component V of V∗(xA − b) is the number of solutions t ∈ (C∗)d of the system of d Laurent polynomial 
equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c11t p(1)
0 + c12t p(2)

0 + · · · + c1nt p(n)
0 = c10

...

cd1t p(1)
0 + cd2t p(2)

0 + · · · + cdnt p(n)
0 = cd0

(13)

for coefficients (ci j) in a fixed Zariski open and dense subset of (C∗)d×(n+1) .

It is important to note that for generic coefficients, the C∗-solutions of the above system are 
all isolated (0-dimensional), and the total number is a constant. By the Kushnirenko’s Theorem 
(Kushnirenko, 1975) (or the more general Bernshtein’s Theorem (Bernshtein, 1975; Huber and Sturm-
fels, 1995)), this number can be expressed in terms of the volume of the Newton polytope of the above 
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system which is the convex hull of the set of n points p(1), . . . p(n), 0 in Rd .2 Here we state the result 
in the context of degree computation and leave the technical statement of the theorem, as well as its 
related concepts to Appendix A.

Proposition 3 (Degree as volume). The generic number of isolated solutions t ∈ (C∗)d of the system of Laurent 
polynomial equation (13) and hence the degree of V is

deg V = d ! · Vold(conv{p(1)
0 , . . . , p(n)

0 ,0}) (14)

where 0 = (0, . . . , 0)� ∈ Rd and columns p(1)
0 , . . . , p(n)

0 of the matrix P0 are considered as points in Rd. The 
notation conv denotes the operation of taking convex hull, and Vold is the volume of a convex body in Rd.

With this formulation, the degree of a component of V∗(xA − b) can be computed efficiently 
through methods in combinatorial geometry.

Remark 4. Recall that while the Smith Normal Form 
[

D 0
0 0

]
of A is unique up to a change of signs of 

the diagonal entries in D , the transformation matrices P and Q are generally not unique. However, 
different choices of the transformations will produce the same value for deg V as given in (14). This 
invariance is best understood via the notion of “local degree” (Gelfand et al., 1994) of a component V
of V∗(xA − b) which is a generalization of the concept of multiplicity and naturally independent from 
the transformation matrices P and Q used in the Smith Normal Form computation. This approach, 
however, requires more advanced mathematical tools. We therefore provide a simple geometric justi-
fication:

Suppose there is a different pair of unimodular matrices P̃ =
[

P̃r

P̃0

]
∈ Mn×n(Z) where P̃0 ∈

M(n−r)×n(Z) and Q̃ ∈ Mm×m(Z) such that[
P̃r

P̃0

]
A
[

Q̃ r Q̃ 0
]=

[
D 0
0 0

]
.

Then it can be shown that there is a unimodular matrix G ∈ M(n−r)×(n−r)(Z) such that

P̃0 = G P0.

The simple proof is included in the Appendix B. Since G is unimodular, that is | det G| = 1, it does not 
change the volume of the “parallelepiped” spanned by the columns of P0 (as vectors). In other words, 
letting p̃(1)

0 , . . . , p̃(n)
0 be the columns of P̃0, then

Vold(conv{p(1)
0 , . . . , p(n)

0 ,0}) = Vold(conv{p̃(1)
0 , . . . , p̃(n)

0 ,0}).
Therefore, the volume expression used in Proposition 3, despite the apparent dependency, is actually 
independent from the choices of transformation matrices used in (5).

3. Parallel degree computation

Proposition 3 provides a computationally viable means for computing the degree of each com-
ponent as the normalized volume of a convex polytope. In this section we shall present a parallel 
algorithm for computing the degree that is suitable for both multi-core systems and GPUs, though 
the focus is the GPU-based implementation. In this section we focus on the computation of (14). Let 
S = {p(1)

0 , . . . , p(n)
0 } ⊂Rd , then

2 In Gelfand et al. (1994) the degree is shown to be equivalent to the “local degree” at a certain point which, in turn, is proved 
to be the volume of the Newton polytope. The Kushnirenko’s Theorem is then derived as a corollary of this fact. However, the 
original proof of Bernshtein’s Theorem and the alternative proof provided by Huber and Sturmfels (1995) do not make direct 
use of the expression of the degree of the C∗-solution set of a binomial system.
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deg V = d !Vold(conv S). (15)

For brevity, let NVold = d ! Vold be the normalized volume in Rd , then the above equation becomes

deg V = NVold(conv S) (16)

Therefore the problem of finding deg V is equivalent to the computation of the normalized volume of 
a lattice polytope (a polytope whose vertices have integer coordinates).

Remark 5. Clearly, (15) and (16) are equivalent. However, from the computational point of view, there 
is one crucial distinction: The knowledge that NVold(S) must be an integer permits the use of efficient 
but potentially less accurate numerical methods using floating point arithmetic and still obtain the 
correct result. Indeed, the exact results can still be obtained as long as the total absolute error is kept 
below 1/2. This is not possible for methods that are designed to compute volume of more general 
polytopes. The algorithm, for computing (16), to be presented below, is hence not directly comparable 
to exact volume computation algorithms (Bárány and Füredi, 1987; Büeler et al., 2000) for general 
polytopes.

3.1. Regular simplicial subdivision

Among many different approaches for computing the normalized volume, here we adopt a classic 
technique known as regular simplicial subdivision (Loera et al., 2010) as this approach produces an im-
portant byproduct that will be used in the computation of witness set, which will be the subject of §4. 
In this approach, we are interested in computing the normalized volume NVold(conv S) by dividing 
the lattice polytope conv S into a collection of smaller pieces for which the volume computation is 
easy. Without loss of generality, we assume S has no interior points, that is, no point in S lies in the 
interior of conv S .

Definition 6. A cell of S is simply an affinely independent subset of S . A simplicial subdivision of S
is a collection D of cells of S , such that

1. For each C ∈D, conv C is a d-simplex inside conv S;
2. For any distinct pair of simplices C1, C2 ∈D, the intersection of conv C1 and conv C2, if nonempty, 

is a common face of the two; and
3. The union of convex hulls of all cells in D is exactly conv S .

A simplicial subdivision plays an important role in computing NVold(conv S): the normalized vol-
ume of a d-simplex in Rd is easy to compute: given a d-simplex � = conv{a0, . . . , ad} ⊂ Zd ,

NVold(�) = |det
[

a1 − a0 · · · ad − a0
] |. (17)

So the volume of conv S can be computed easily as the sum of the volume of all simplices in D.
Note that the simplicial subdivision for a given polytope is, in general, not unique, and there are 

many different approaches for constructing them. Here we focus on the approach of regular simplicial 
subdivision: One can define a “lifting function” ω : S → R by assigning a real number to each point 
in S . For each point a ∈ S , a new point (a, ω(a)) ∈ Rn can be created by using ω(a) as an additional 
coordinate. This procedure “lifts” points of S into Rd+1, the space of one higher dimension. Let

Ŝ = {â = (a,ω(a)) | a ∈ S} (18)

be the lifted version of S via the lifting function ω. Figs. 1a and 1b show examples of this lifting 
procedure. Let π : Rd+1 →Rd be the projection that simply erases the last coordinate, then π( Ŝ) = S .

Recall that for a face F̂ of the lifted polytope conv Ŝ , its inner normal is a vector α̂ ∈ Rd+1 such 
that the linear functional 〈•, α̂〉 attains its minimum over conv Ŝ on F̂ . Moreover, a face F̂ of conv Ŝ is 
called a lower face with respect to the projection π if its inner normal α̂ has positive last coordinate. 
Without loss of generality, in this case, we may assume the last coordinate of α̂ to be 1, that is, 
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Fig. 1. Regular simplicial subdivision via generic lifting.

α̂ = (α1, . . . , αn, 1) ∈ Rd+1. It can be shown that if the lifting function ω : S → R is chosen so that 
no j + 2 points in Ŝ are contained in a j-dimensional affine space, then the projections of all the 
d-dimensional lower faces of conv Ŝ via π form a simplicial subdivision for conv S which is called a 
regular simplicial subdivision of conv S . Such a lifting function is called generic (with respect to S). In 
particular, if the liftings are randomly picked, then with probability one, the lifting function will be 
generic. The construction of this simplicial subdivision is therefore equivalent to the enumeration of 
all the lower faces of conv Ŝ .

Example 7. Consider, for example, S = {(0, 0), (0, 1), (1, 1), (1, 0)} in the xy-plane. A simplicial subdi-
vision of conv S can be obtained via the following procedure: First assign “liftings” ω1, ω2, ω3, ω4 ∈ R

to each of the vertices as the z-coordinate and obtain new points (0, 0, ω1), (0, 1, ω2), (1, 1, ω3), 
(1, 0, ω4) in R3. It is easy to verify that with almost all choices of the liftings the four “lifted” 
points (Fig. 1a) do not lie on the same plane. In that case, the convex hull conv{(0, 0, ω1), (0, 1, ω2),

(1, 1, ω3), (1, 0, ω4)} of the four lifted vertices form a three dimensional polytope (Fig. 1b) with tri-
angle faces. Of particular importance is the lower hull of this polytope which is the faces facing 
downward. As shown in Fig. 1c, the projection of the faces in the lower hull back onto the xy-plane 
forms a simplicial subdivision of the original shape conv S .

Algebraically speaking, a d-dimensional lower face of conv S is the convex hull of a set of d + 1
points {â0, . . . , ̂ad} ⊂ Ŝ for which there exists a α̂ = (α, 1) ∈ Rd+1 such that the system of inequalities

I(a0, . . . ,ad) :
{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â0, α̂〉 ≤ 〈â, α̂〉 for a ∈ S
(19)

is satisfied. In other words, the existence of the lower face defined by {â0, . . . , ̂ad} ⊂ Ŝ is equivalent 
to the feasibility of the above system of inequalities I(a0, . . . , ad). This algebraic description of the 
lower faces is the basis on which enumeration methods are developed. In the following subsections, 
we shall present an approach that results in a parallel algorithm which is suitable for both multi-core 
systems and GPU devices. In this approach, we employ two complementary processes of “extension” 
and “pivoting”. We shall outline them below.

3.2. Extension of k-faces

Intuitively speaking, in the extension process, one starts with the vertices of the lower hull of 
conv Ŝ . For each of these vertices, systematic attempts are made to “extend” it by finding another 
lower vertex so that the two vertices form a “lower edge” (an edge on the lower hull of conv Ŝ). The 
possible extensions may not be unique, and for each possibility, further attempts are made to extend 
it to 2-dimensional lower faces. This process continues until one reaches all the d-dimensional lower 
faces. Finally, the collection of such d-dimensional lower faces will project down, via π , to form a 
simplicial subdivision for conv S .

To describe this process, we first extend the characterization (19) to include lower faces of all 
dimensions: A set of affinely independent k + 1 points in Ŝ is said to determine a lower k-face if 
their convex hull forms a k-dimensional lower face of conv Ŝ with respect to the projection π . Stated 
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Fig. 2. A directed acyclic graph of possible lower k-faces.

Fig. 3. A direct graph of possible lower k-faces colored by the feasibility of the corresponding system of inequalities.

algebraically, the affinely independent set {a0, . . . , ak} determines a lower k-face if and only if there 
exists an α̂ = (α, 1) ∈ Rd+1, such that the system of inequalities

I(a0, . . . ,ak) :
{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,k

〈â0, α̂〉 ≤ 〈â, α̂〉 for a ∈ S
(20)

is satisfied.
Geometrically, a lower 0-face is a vertex on the lower hull of conv Ŝ , and a lower 1-face is simply 

a lower edge, etc. We can conveniently organize all possible system of inequalities of the above form 
into a directed acyclic graph, as illustrated in Fig. 2, where each node represents a system of inequalities 
and there is an edge from I(A) to I(B) whenever B is obtained by joining new points in S into A. 
With this construction, the resulting graph is graded by the number of points involved.

It can be easily verified that for generic lifting function ω, containment relation between lower 
k-faces of the same dimension is impossible. That is, for a fixed k, no lower k-face is contained in 
another lower k-face. Therefore the graph describes precisely the containment relationship among 
possible lower k-faces.

A node is said to be feasible if the corresponding system of inequality is feasible. Fig. 3 shows an 
example of the labeling of the graph via the feasibility of the nodes: dark for infeasible nodes and 
white for feasible ones. Recall that a node determines a lower k-faces if and only if it is feasible. 
Hence we only need to explore the feasible subgraph (the white subgraph in Fig. 3).

One crucial observation is that if two points do not define a lower edge, then they cannot be a 
part of any lower faces. More generally, if a set of points does not define a lower k-face, then there 
are no lower j-faces containing them for any j > k. Stated formally, for F̂1 ⊂ Ŝ ,
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Fig. 4. Simplicial pivoting procedure moves from one lower face to another.

I( F̂1) is infeasible =⇒ I( F̂ ) is infeasible for all F̂1 ⊂ F̂ ⊂ Ŝ.

In terms of the graph, if a node is infeasible, then the entire subgraph reachable by that node is 
infeasible. Therefore during the exploration of the graph, once an infeasible node is encountered, 
no further exploration from that node is needed as all nodes reachable are infeasible. This simple 
observation produces significant savings in terms of computation.

A key procedure in the exploration of the feasible subgraph is the jump from one feasible node to 
another along an edge. Assuming, for some {a0, . . . , ak} ⊂ S , the node I(a0, . . . , ak) is feasible, then 
the feasibility of an adjacent node, say via the edge corresponds to ak+1, can be determined by solving 
the linear programming problem L P (a0, . . . , ak ; ak+1) given by

Minimize 〈âk+1, α̂〉 − 〈â0, α̂〉

subject to

{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,k

〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S

(21)

in the variable α̂ = (α, 1) for α ∈Rd .
Note that under the constraints, the value of the objective function must be nonnegative. In-

deed, the minimum value of 0 is attainable precisely when there is an α̂ for which the constraints 
are satisfied and simultaneously 〈âk+1, α̂〉 = 〈â0, α̂〉. That is, minimum value is 0 if and only if 
I(a0, . . . , ak, ak+1) is feasible. In this case, the new feasible node I(a0, . . . , ak, ak+1) is discovered. Ge-
ometrically, we have “extended” the lower k-face determined by {â0, . . . , ̂ak} into a lower (k + 1)-face 
by joining it the new vertex âk+1.

Using the extension procedure as a basic building block, one can gradually explore the feasible 
subgraph in an inherently parallel manner: different branches of the spanning tree of the subgraph 
can be explored independently.

3.3. Simplicial pivoting

The extension procedure described above can be complemented by another process, called “simpli-
cial pivoting”, that explores the feasible subgraph by “moving sideways” in the graph from one lower 
d-face to another.

This process starts with a lower d-face of conv Ŝ already obtained (which corresponds to a cell in 
the regular simplicial subdivision). Consider, for example, one of the lower faces shown in Fig. 4. Using 
an edge as a hinge, we shall “pivot” one lower face until another lower face is obtained. More gener-
ally, recall that a lower d-face is determined by a set of d + 1 affinely independent points {â0, . . . , ̂ad}
in Ŝ that has an inner normal of the form α̂ = (α, 1) with α ∈ Rd+1. Stated algebraically, the system 
of inequalities

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S
(22)

is satisfied. Note that the d equalities form a system of d linearly independent constrains on α ∈ Rd

and hence uniquely determine α. By removing a single equality from the above system, we give the 
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Fig. 5. Via the pivoting procedure, one moves from a simplex (a) to a different simplex (b) by leaving a chosen vertex and then 
to yet another simplex (c).

inner normal α̂ one degree of freedom which would allow it to “pivot”. The goal is to let it pivot until 
it defines a different lower d-face.

For any choice i = 0, . . . , d, with the equality corresponding to âi in the above system (22) re-
moved, the inner normal α̂ = (α, 1) ∈ Rd , now with one degree of freedom, is characterized by the 
system

P (a0, . . . ,ad ; i) :

⎧⎪⎨
⎪⎩

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d, but j �= i

〈â0, α̂〉� 〈âi, α̂〉
〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S

(23)

Note that this system has d − 1 equalities. If a solution with d equalities exists, then that solution 
corresponds to a different lower d-face (i.e. a different cell in the resulting subdivision). In the context 
of Linear Programming, such a solution is called a basic feasible solution. The problem of finding a 
basic feasible solution is known as the Phase One problem in Linear Programming. It can be solved 
accurately and efficiently.

This procedure is called “simplicial pivoting”. It allows us to pivot from one lower d-face to another. 
By repeatedly applying this procedure, more lower d-faces can be gathered. Fig. 5 illustrates this 
process.

3.4. Traverse the feasible subgraph

In the above we have formulated the enumeration of lower d-faces as the problem of exploring 
the feasible subgraph which contains them as a subset. We also have two procedures for “walking” 
within the graph: The extension procedure moves from one lower face to another of one higher 
dimension while the pivoting procedure jumps from one lower d-face to another lower d-face. With 
these building blocks in place, the exploration can be handled by a classic graph traversal algorithm fol-
lowing a “discover-and-explore” scheme. This algorithm can be implemented to exploit the inherent 
parallelism: the neighbors of each discovered node can be explored independently. The detailed de-
scriptions of such an algorithm can be found in standard text in parallel algorithms (e.g. Skiena, 2009;
Herlihy and Shavit, 2012). Of particular relevance is the adoption of such graph traversal algorithm 
in the context of “mixed cell enumeration”. The connection is discussed in §5. Here we focus on the 
issues specific to an efficient GPU-based implementation.

One important problem we must deal with, in the parallel algorithm, is that same nodes may 
be discovered by different threads at the same time. Since the degree is the sum of the normalized 
volume of the projection of all the lower d-faces which are represented by the nodes in the fea-
sible subgraph, duplicated nodes will produce incorrect results. Therefore, an efficient and scalable 
mechanism for ensuring no duplicated lower d-faces are listed is the key to the correctness of the 
algorithm.

This mechanism appears to be the bottleneck, in terms of performance, in related algorithms with 
similar organization (see §5). Our experiments confirm that an inefficient checking mechanism would 
be the limiting factor of the scalability in a parallel implementation. Since on a GPU, it is typical to 
have thousands of threads active simultaneously, the efficiency of such a mechanism is crucial.
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In the present contribution, the hash table data structure is used to keep track of the nodes, in 
the graph, that have been discovered or completely-explored. The great advantage of this choice is 
that unlike a sorted data structure, hash table provides nearly constant access time, in most cases. In 
our current implementation, for simplicity, the well-tested bit-string hash function from the standard
C++ library is used.3 Our experiments suggest that a hash table with 216 to 220 entries4 is sufficient 
for all problems considered in our numerical experiments to be presented in §6 in the sense that the 
collision rate within hash table access can be virtually ignored.

3.5. Summary of the algorithm

In the above, we formulate the degree computation for solution components defined by binomial 
systems as the exploration of the feasible subgraph to be accomplished by the two complementary 
processes: extension and pivoting. In this section, we list the main algorithms.

These algorithms are designed for a system with one or more GPU devices and a single CPU with 
the GPU performing most of the computationally intensive tasks. For simplicity, we restrict ourselves 
to modern GPUs manufactured by NVidia and build our program based on NVidia CUDA (a GPU pro-
gramming framework). The GPU devices must share memory with the CPU since they must all have 
access to data structures WaitingNodes, KnownNodes, and NewNodes (to be defined below). In 
the current implementation, this is accomplished via a technique known as pinned memory (NVIDIA 
Corporation, 2011) provided by the CUDA framework which allows the efficient sharing of data be-
tween GPU devices and the CPU without explicit copying.

In the following algorithms, the list WaitingNodes contains nodes whose feasibility is to be 
determined by the extension procedure. Cells is the unordered collection of lower d-faces already 
discovered. KnownNodes is the hash table that records the discovery of nodes, and it is crucial 
mechanism by which we ensure the uniqueness of the discovered nodes. Finally, NewNodes is an 
unordered list that keeps track of nodes discovered through pivoting or extension. They need to be 
checked against KnownNodes for uniqueness.

Random is a function that randomly chooses an item from a collection using pseudo random 
number generator. The randomness is employed to achieve a more uniform performance from one 
run to another for the sole purpose of simplifying the benchmarking process. SimplexPhaseOne and
SimplexPhaseTwo are the phase-one and phase-two algorithms of the simplex method for the linear 
programming problems (21) and (23) respectively. Even though, at over 3000 lines, the C++ code for 
these two components are the longest and most complicated parts of the entire program, they have 
been a fixture of the long line of “mixed volume computation” software developed over the last two 
decades whence the present work inherits much of its techniques and design. Therefore we choose to 
not describe them in detail and refer to works such as Chen et al. (2014b), Gao and Li (2000, 2003), 
Lee and Li (2011), Li and Li (2001), Mizutani and Takeda (2008), Mizutani et al. (2007).

The Extend procedure tests the feasibility of a node (see §3.2) in the waiting list WaitingNodes, 
and it is designed to run simultaneously on all available threads across all GPU devices.

1: function Extend

2: if WaitingQueue �=∅ then
3: {a0, . . . , ak} ← Dequeue( WaitingQueue )
4: F ← SimplexPhaseTwo( L P ({a0, . . . , ak}) )
5: if F �= ∅ then
6: NewNodes ← NewNodes∪ {F }
7: end if
8: end if
9: end function

3 The specialized hash function for bit-strings (std::bitset) is a new addition to C++11 standard. In our implementation, the 
version as in LLVM (The LLVM Compiler Infrastructure Project) was used.

4 Each entry is a 32-bit integer that represents the index of a known node which, in turn, corresponds to a cell in the regular 
simplicial subdivision of conv S .
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The Pivot procedure implements the simplicial pivoting process detailed in §3.3, and it is designed 
to run simultaneously on all available threads across all GPU devices. It picks a random lower d-face 
already discovered and applies simplicial pivoting to potentially obtain a new lower faces. Just like 
the Extend procedure above, newly discovered nodes will be placed in the NewNodes list.

1: function Pivot

2: if Cells �= ∅ then
3: {a0, . . . , ad} ← Random( Cells )
4: 	 ← min(d + 1, 10)

5: for i = 1, . . . , 	 do
6: j ← Random( {0, . . . , d} )
7: F ← SimplexPhaseOne( P ({a0, . . . , ad} \ {a j}) )
8: if F �= ∅ then
9: NewNodes ← NewNodes∪ {F }

10: end if
11: end for
12: end if
13: end function

The procedure CheckUniq checks newly discovered nodes against the hash table KnownNodes to 
make sure they have not already been discovered. It will run on a GPU device with a large number of 
threads simultaneously checking the uniqueness of all nodes in the list of NewNodes.

1: function CheckUniq

2: if NewNodes �=∅ then
3: {a0, . . . , ak} ← Dequeue( NewNodes )
4: if {a0, . . . , ak} /∈ KnownNodes then
5: KnownNodes= KnownNodes∪ {F }
6: if k = d + 1 then
7: Cells= Cells∪ {{a0, . . . , ak}}
8: else
9: for all a ∈ S \ {a0, . . . , ak} do

10: if {a0, . . . , ak, a} /∈ KnownNodes then
11: WaitingQueue= WaitingQueue∪ {{a0, . . . , ak, a}}
12: end if
13: end for
14: end if
15: end if
16: end if
17: end function

Finally, the main procedure, which runs on the CPU, coordinates all the different processes.

1: function Main

2: WaitingNodes ← S
3: while WaitingNodes �= ∅ do
4: Run Extend on available GPU threads
5: Run Pivot on available GPU threads
6: Wait for Extend and Pivot

7: Run CheckUniq on available GPU threads
8: end while
9: end function

Note that the Extend and Pivot are two independent procedures (i.e. two different “kernels” in the
CUDA terminology) that can be executed in parallel. In particular, when more than one GPU devices 
are available in a system, the two procedures can run on different devices to maximize the scalability.
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4. Computation of witness sets

The concept of “witness sets” (Sommese and Wampler, 1996) is one of the most fundamental and 
versatile tools in Numerical Algebraic Geometry. In its most basic form, given a pure dimensional 
algebraic set, it can be shown that its intersection with a generic affine space of complementary 
dimension consists of finitely many isolated points. This finite set is called a witness set of the algebraic 
set. It is a key ingredient in the computation of Numerical Irreducible Decomposition (Sommese and 
Wampler, 1996) of an algebraic set. In many scenarios, it produces the degree of each component 
as a byproduct. Indeed, this technique (via witness sets) was first used to numerically compute the 
degrees of the “Master Space” problem (§6) in the work by Hauenstein et al. (2013).

Given the ubiquity of witness sets in Numerical Algebraic Geometry, in this section, we shall briefly 
outline a homotopy construction for computing witness sets for a component of V∗(xA − b) that 
utilizes the extra information generated by the degree computation process described above. It is a 
special case of the polyhedral homotopy (Huber and Sturmfels, 1995).

Recall that by Proposition 2, the intersection between a component V ⊆ V∗(xA − b) and a generic 
affine space of complementary dimension consists of precisely the points t = (t1, . . . , td) ∈ (C∗)d that 
satisfy the system of d Laurent polynomial equations in d variables given by

c11t p(1)
0 + c12t p(2)

0 + · · · + c1nt p(n)
0 = c10

...

cd1t p(1)
0 + cd2t p(2)

0 + · · · + cdnt p(n)
0 = cd0

(24)

where the coefficients depend on both the choice of the component in V∗(xA − b) and the choice of 
the r-dimensional affine space.

Reusing the notation from §3, let S = {p(1)
0 , . . . , p(n)

0 , 0}, and let ω : S → R be the generic lifting 
function used for constructing the regular simplicial subdivision of conv S in §3. Without loss of 
generality, we can pick ω to have images only in Q. With these, we introduce a new variable s and 
consider

H(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

c11t p(1)
0 sω(p(1)

0 ) + · · · + c1nt p(n)
0 sω(p(n)

0 ) − c10sω(p0
0) =∑a∈S c1,atasω(a)

...

cd1t p(1)
0 sω(p(1)

0 ) + · · · + cdnt p(n)
0 sω(p(n)

0 ) − cd0sω(0) =∑a∈S cd,atasω(a)

(25)

which is constructed by multiplying each term in (24) by a rational power of the new variable s whose 
exponent is determined by the lifting function ω : S → Q. Clearly, H(t, 1) = 0 is exactly the system 
(24) which we aim to solve (inside (C∗)d). As s varies, H represents a continuous deformation of 
the system (24), or a homotopy. The central idea behind the homotopy continuation method for solving 
systems of equations is the deformation of a system into a “starting system” which can be solved 
easily. Then numerical continuation methods are employed to trace the movement of the solutions 
of the starting system under the deformation toward the solutions of the original system which one 
aims to solve.

The key here is to find an appropriate starting system that can be easily solved. As is, H(t, 0)

cannot be used as the starting system since at s = 0, the system is either identically zero or undefined. 
Therefore certain transformations are necessary to produce a meaningful and solvable starting system. 
Such transformations are given by the regular simplicial subdivision discussed in §3.

Let D be a regular simplicial subdivision obtained by the algorithm presented in §3.5. Recall that 
each cell in D is a projection of a cell of the form {â0, . . . , ̂ad} such that conv{â0, . . . , ̂ad} is a lower 
d-face of conv Ŝ that is characterized by (22). That is, there exists a (unique) vector of the form 
α̂ = (α1, . . . , αd, 1) such that

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â , α̂〉 < 〈â, α̂〉 for all a ∈ S.
(26)
0
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Using α̂ = (α1, . . . , αd, 1), we shall consider the change of variables

t =

⎧⎪⎪⎨
⎪⎪⎩

t1 = y1sα1

...

td = ydsαd

(27)

with which H becomes

H(t, s) = H(y1sα1 , . . . , ydsαd , s) =

⎧⎪⎨
⎪⎩
∑

a∈S c1,a yas〈a,α〉+ω(a) =∑a∈S c1,a yas〈â,α̂〉
...∑

a∈S cd,a yas〈a,α〉+ω(a) =∑a∈S cd,a yas〈â,α̂〉

Let β = 〈â0, α̂〉 and define a new homotopy

Hα,β(y, s) = s−β H(y1sα1 , . . . , ydsαd , s) =

⎧⎪⎨
⎪⎩

s−β
∑

a∈S c1,a yas〈â,α̂〉
...

s−β
∑

a∈S cd,a yas〈â,α̂〉
(28)

Note that the new homotopy still has the necessary property that Hα,β (y, 1) = 0 is identical to the 
system (24) which we aim to solve.

One important observation here is that, by (26), there are precisely d + 1 terms in each component 
of Hα,β (y, s) having no power of s (the terms corresponding to a0, . . . , ad), and all other terms have 
positive powers of s. Consequently, at s = 0, terms with positive powers of s vanish, leaving only⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1,a0 ya0 + c1,a1 ya1 + · · · + c1,ad yad = 0

c2,a0 ya0 + c2,a1 ya1 + · · · + c2,ad yad = 0
...

cd,a0 ya0 + cd,a1 ya1 + · · · + cd,ad yad = 0

(29)

To simplify the notation, let

C =
⎡
⎢⎣

c1,a0 · · · c1,ad
...

. . .
...

cd,a0 · · · cd,ad

⎤
⎥⎦ � = [a0 · · · ad

]

then the above equation can be written as

C · (y�)� = 0. (30)

For generic choices of the coefficients, there exists a nonsingular matrix G ∈ Md×d(C) such that

GC =

⎛
⎜⎜⎜⎝

c∗
11 c∗

12
c∗

21 c∗
22

. . .
...

c∗
d1 c∗

d2

⎞
⎟⎟⎟⎠ ,

for some c∗
i j ∈ C∗ . Then without altering its solution set, (30) can be transformed into the equivalent 

system

GC(t�)� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c∗
11 ya0 + c∗

12 yad = 0
c∗

21 ya1 + c∗
22 yad = 0

...
...

...

c∗ yad−1 + c∗ yad = 0

(31)
d1 d2



T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 551
which is also a Laurent binomial system. Therefore, the algorithm outlined can then be used to solve 
this system. The solutions are precisely the solutions of the starting system (29) for the homotopy 
Hα,β . Then numerical continuation techniques can be applied to trace the solutions toward s = 1 pro-
ducing solutions to the target system (24), which will be points in the witness set of the component 
V of V∗(xA − b).

Recall that the construction of the homotopy Hα,β depends on a cell in the regular simplicial 
subdivision D of conv S . It is typical for D to contain more than one cell. In this case, each cell 
induces a different homotopy of the form of Hα,β . The above construction is a special case of the 
polyhedral homotopy (Huber and Sturmfels, 1995), and its theory guarantees that as one goes through 
all the cells in D, the resulting homotopies of the form Hα,β will find all the points in the witness 
set of V .

5. Related works

The approach developed in this article is a natural continuation of a rich web of works on the 
“mixed cell enumeration” problem initiated by the seminal work of Huber and Sturmfels (1995). 
The degree computation problem can be considered as a special case of the mixed cell enumeration 
problem known as the “unmixed case”. Recent development in the computational aspects of this 
problem can be found in works such as Chen et al. (2014b), Gao and Li, (2000, 2003), Lee and Li
(2011), Li and Li (2001), Mizutani and Takeda (2008), Mizutani et al. (2007), Verschelde et al. (1996). 
A broad survey of this topic can be found in Li (2003).

In particular, at the core of the proposed algorithm are the two complementary processes: the 
“extension” process which gradually extends lower faces one dimension at a time and the “pivoting” 
process which jumps directly from one cell to another. In the context of the DAG of “lower k-faces” 
(Fig. 3), the “extension” process explores the DAG vertically, and the “pivoting” process moves in the 
horizontal direction among the “lower d-faces”.

The “extension” process is the core concept in several different mixed cell enumeration algorithms 
including Chen et al. (2014b), Gao and Li (2003), Lee and Li (2011), Li and Li (2001), Mizutani and 
Takeda (2008), Mizutani et al. (2007). The contribution of the present work to the development of 
the “extension” process is the adaptation to GPU devices. Unlike some of the previous attempts (e.g. 
Chen et al., 2014a, 2017) in using GPU devices in mixed cell enumeration algorithms where GPUs 
only perform certain specialized tasks (as an accelerator for simple linear algebra procedures), in the 
current work, however, the entire successive extension process runs on GPU devices.

Closely related to the present work is the article by Chen and Li (2014) which includes an em-
pirical investigation on the use of existing (CPU-based) mixed cell enumeration algorithms in the 
computation of degrees of C∗-solution set of binomial systems. Motivated by the encouraging results 
reported, the current work follows the same general approach of degree computation (as of comput-
ing normalized volume) but provides a significant improvement in both the absolute efficiency and 
parallel scalability by introducing the “pivoting” process into the algorithm. The original idea of the 
“pivoting” process in the context of “mixed cell enumeration” was proposed in Gao and Li (2000). 
However, in terms of efficiency, it was quickly eclipsed by algorithms based on the “extension” pro-
cess, and there appears to be no further development of the idea between year 2000 and 2013.5

Moreover, in the present article, the “pivoting” and the “extension” processes are combined as we 
believe the complementary duo could offer much better scalability which is crucial in the GPU-based 
implementations. This is confirmed by the numerical experiments, to be presented in §6.

The graph-theoretic view of the “cell enumeration” process, adopted in this article, was introduced 
in Gao and Li (2000) and, independently, in Mizutani et al. (2007). The parallelization of the algorithm 
follows the same general idea attempted in Chen et al. (2014b), but it is modified, in this article, to 
adapt to the massively parallel GPU architectures.

5 A recent work of Malajovich (2014), documents an independent development of an approach that appears to make use of 
a process similar to that proposed in Gao and Li (2000) and the current work. However, as the work focuses on the complexity 
analysis of algorithm, the authors are unable to directly assess the implications on performance or parallel scalability.
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The homotopy (28) for computing witness sets, proposed in §4 is a special case of the polyhedral 
homotopy introduced in Huber and Sturmfels (1995) applied to the Laurent polynomial system (13).

6. Case study: master space of N = 1 gauge theories

As a case study, we consider a system arising from theoretical physics, in particular, string the-
ory, which has been studies in related works including Chen and Li (2014), Forcella et al. (2008b), 
Mehta et al. (2012). A central area of current research in string theory is the study of the vacuum 
moduli space, which, roughly speaking, is the space of continuous solutions (or the affine algebraic 
variety) of a multivariate nonlinear function, called the superpotential of the theory under considera-
tion. Different positive-dimensional components of the vacuum moduli space correspond to different 
particle branches, such as mesonic, baryonic, etc. Symbolic algebraic geometry methods have been 
used to study the complicated structures of the vacuum moduli spaces of various string theory mod-
els (Gray, 2011; Gray et al., 2006, 2009). However, the methods are known to run out of the steam 
for even moderate sized systems due to the algorithmic complexity issues. Recently, numerical al-
gebraic geometry methods have been introduced to string theory research and have solved bigger 
systems (Greene et al., 2013; Hauenstein et al., 2013; He et al., 2013; Martinez-Pedrera et al., 2013;
Mehta, 2011; Mehta et al., 2012).

In this article, we consider special types of models coming from string theory in which the systems 
to be solved are binomial systems, and in which the vacuum moduli spaces are composed of unions of 
positive-dimensional components. We take a model which is actively investigated by string theorists 
because its vacuum moduli space is a combination of mesonic and baryonic branches (Forcella et al., 
2008a, 2008b). Such moduli spaces are called master spaces.

In particular, we consider the superpotential for N = 1 gauge theories for a D3-brane on the 
Abelian orbifold C3/Zm ×Zk . The superpotential for this theory, for fixed m, k ∈ N, is given by

Wm,k =
m−1∑
i=0

k−1∑
j=0

xi, j yi+1, j zi+1, j+1 − yi, jxi, j+1zi+1, j+1 (32)

where the periodic boundary conditions are imposed, e.g., xi,m = xi,0 for any i and xk, j = x0, j for 
any j. This is a polynomial in 3mk variables: xi, j , yi, j , zi, j for the combinations of i ∈ Zk and j ∈ Zm . 
For example, when m = k = 2, the superpotential is

W2,2 = x0,0 y1,0z1,1 − y0,0x0,1z1,1 + x0,1 y1,1z1,0 − y0,1x0,0z1,0

+ x1,0 y0,0z0,1 − y1,0x1,1z0,1 + x1,1 y0,1z0,0 − y1,1x1,0z0,0,

a polynomial in 12 variables x0,0, x0,1, x1,0, x1,1, y0,0, y0,1, y1,0, y1,1, z0,0, z0,1, z1,0, z1,1. We are 
interested in finding the critical points of Wm,k , that is, points at which all the partial derivatives of 
the superpotential Wm,k , with respect to variables xi, j , yi, j , zi, j , are zero. These points are precisely 
the solutions to the system of polynomial equation

∂Wm,k

∂xi, j
= ∂Wm,k

∂ yi, j
= ∂Wm,k

∂zi, j
= 0 (33)

in the variables xi, j , yi, j , zi, j .
Notice that in Wm,k , each variable appears in exactly two distinct terms. Consequently, the partial 

derivative of Wm,k with respect to each variable consists of exactly two terms, hence it forms a 
binomial polynomial. For instance,

∂W2,2

∂x0,0
= y1,0z1,1 − y0,1z1,0,

∂W2,2

∂x0,1
= −y0,0z1,1 + y1,1z1,0.

Therefore (33) is indeed a binomial system which shall simply be denoted by ∇Wm,k . We are inter-
ested in computing the dimension and degree of components of the C∗-solution set V∗(∇Wm,k) of 
this system.
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Table 1
The dimension of V∗(∇Wm,k) for a range of values for m and k.

m/k 1 2 3 4 5 6 7 8

1 N/A 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18
3 5 8 11 14 17 20 23 26
4 6 10 14 18 22 26 30 34
5 7 12 17 22 27 32 37 42
6 8 14 20 26 32 38 44 50
7 9 16 23 30 37 44 51 58
8 10 18 26 34 42 50 58 66

Table 2
The dimension of V∗(∇Wm,k) for a range of larger values for m = k.

m = k 9 10 11 12 13 14 15 20 25 30 35 40

Dim. 83 102 123 146 171 198 227 402 627 902 1227 1602

Table 3
The degree of the C∗-solution set defined by (32) for a range of m and k values. This table lists only the results that can 
be computed within 1 hour on a NVidia GTX 780 graphics card with the double-precision version of the GPU-based parallel 
algorithm presented in this work. Shaded entries correspond to and agree with the results already presented in Forcella et al.
(2008b), Mehta et al. (2012). Certain entries are verified via CPU-based parallel algorithms (Chen and Li, 2014), but entries 
marked by * are results that cannot be computed with any CPU-based program within a reasonable amount of time (2 days for 
multi-core systems and 7 days for clusters). Entries marked by ≥ are lower bounds of the degrees computed by counting the 
total number of cells in the simplicial subdivision of the polytope associated with (32).

m/k 1 2 3 4 5 6 7 8
1 2 4 8 16 32 64 128
2 2 14 92 584 3632 22304 135872 823424
3 4 92 1620 26762 437038 7029180 111135118* ≥ 100100328
4 8 584 26762 1169876 50467100 ≥ 11907022 ≥ 37567994
5 16 3632 437038 50467100 ≥ 99710106 ≥ 62944504
6 32 22304 7029180 ≥ 11907022 ≥ 62944504
7 64 135872 111135118* ≥ 37567994
8 128 823424 ≥ 100100328

The dimensions and the degrees of the top dimensional components of this system were first 
computed in Forcella et al. (2008b) for up to m = 3 and k = 5 using the Gröbner basis method. Later 
on, in Mehta et al. (2012), the dimensions and degrees of all the components for up to m = 3 = k
were carried out using numerical algebraic geometry methods. Table 1 and 2 show the dimension of 
V∗(∇Wm,k) ⊂ (C∗)3mk for a range of values for m and k which are computed via Smith Normal Form 
decomposition (5). More importantly, our implementation shows impressive efficiency in computing 
the degree of V∗(∇Wm,k) for larger values of m and k, including a component of degree as high as 
50467100, for m = 4 and k = 5. Table 3 shows the degree of V∗(∇Wm,k) for a range of m and k
values that can be computed within one hour6 which is a significant expansion of the existing results 
presented in Forcella et al. (2008b), Mehta et al. (2012) (although the methods used in these two 
works yield more information than the proposed approach). In terms of efficiency and scalability, the 

6 The time limit is chosen based on two limitations of the experiment setup. Firstly, the GPU-devices used in the experi-
ments (NVidia GTX 780) lacks ECC (error correcting code) support for its memory (known as DRAM) and is therefore prone 
to undetectable and catastrophic random error in stored data. The comprehensive study (Schroeder et al., 2011) conducted in 
real world scenarios concludes that “DRAM error rates that are orders of magnitude higher than previously reported, with 25,000 to 
70,000 errors per billion device hours per Mbit...”. While in the experiments we were not able to directly observe such errors, the 
surprisingly high estimate suggests that it can be risky to run long experiments on GPU-devices that have no ECC support. 
Moreover, for larger problems in this family that require longer running time, floating arithmetic in higher precision is likely 
needed which only has very limited support at this point.
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Table 4
Speedup ratios achieved by the GPU-based double-precision (DP) and single-precision (SP) 
algorithms respectively on NVidia GTX 780 when compared to MixedVol-2.0 running on an
Intel Xeon 2.4 GHz CPU. “0.00” represents speedup ratios too small to be measured reliably. 
The number of threads are chosen to be multiples of 32 which is the “warp size” (smallest 
group of threads in CUDA framework). Block size (number of threads working as a team) 
ranging from 64 to 1024 is used depending on the total number of threads. The GPU 
schedules thread execution based on a number of factors, therefore we cannot guarantee 
the simultaneous execution of all the threads.

GPU threads DP speedup ratio SP speedup ratio

64 0.00 0.00
128 0.00 0.00
256 0.00 0.00
512 0.91 0.73
1024 0.98 4.14
2048 1.15 6.66
4096 2.20 10.99
8192 4.01 18.71
214 7.99 35.00
215 15.00 40.10
216 16.33 45.33
217 29.47 44.99
218 28.33 41.06

Table 5
Speedup ratios achieved by using multiple identical NVidia GTX 780 de-
vices with the single device performance (using the same algorithm) as a 
reference.

N.o. devices 1 2 3
Speedup over single device 100% 188% 213%
Max. speedup over CPU 28.33 54.12 61.00
Max. speedup over a cluster of 100 nodes 0.48 0.91 1.04

proposed algorithm is also a substantial improvement over existing algorithms investigated in Chen 
and Li (2014).

Table 4 shows the speedup ratio achieved by the GPU-based algorithm, presented in §3, over its 
closest serial CPU-based implementation MixedVol-2.0 (Lee and Li, 2011) which is widely regarded 
as one of fastest serial software program for computing “mixed volume” (see §5 and Appendix A
for its connection with degree computation considered in this article). Remarkably, with sufficient 
GPU threads nearly 30 fold speedup ratio has been achieved by the double-precision version of the 
algorithm. When the single-precision version is used, even higher speedup ratio can be achieved. Un-
fortunately, it appears that single-precision is, in general, not reliable in handling very large problems 
due to its insufficient precision.

More important to note is the great potential of the GPU-based algorithm when multiple GPU de-
vices are used. Table 5 shows the speedup ratio achieved by multiple GPU devices when compared 
to a single GPU, a single CPU, and a small cluster of 100 nodes. With three GPU devices, over 60 fold 
speedup over the single-threaded CPU-based algorithm (MixedVol-2.0) has been achieved. The most 
surprising result is the comparison between the GPU-based algorithm, developed in this article, run-
ning on three GPU devices and a similar CPU-based algorithm running on a small cluster. MixedVol-3
is a parallel version of MixedVol-2.0 (Lee and Li, 2011) and, now, a part of a larger software pro-
gram Hom4PS-3 (Chen et al., 2014a). With three NVidia GTX 780 our GPU-based algorithm computes 
the degree for V∗(∇W4,5) faster than MixedVol-3 on a small cluster totaling 100 Intel Xeon 2.4 GHz
processor cores.

In computing the degrees of V∗(∇Wm,k) for certain larger m and k, while the GPU based algorithm 
was unable to compute the degree exactly due to insufficient numerical accuracy: In some cases the 
algorithm successfully obtained simplicial subdivisions of the polytopes associated with V∗(∇Wm,k), 
but the volumes of cells, which are given as matrix determinants (17), could not be computed with 
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sufficient accuracy to ensure the exactness. In some other cases, the random lifting function fails to 
be sufficiently “generic”. Consequently, the induced subdivision contains cells that are not simplices. 
In either cases, however, since the volume of each cell is at least one, the total number of cells is 
therefore a lower bound of the degree which equals the total volume of all the cells. Although these 
lower bounds are likely to be much smaller than the actual degrees, given the sheer size of these 
systems, these partial results still merit further investigations and improvements on the approach 
presented here. The lower bounds are therefore also included in Table 3 (entries marked with “≥”).

While the rigorous analysis and physical interpretation of the data presented here are outside the 
scope of this article, the rich set of data shown in Tables 1, 2, and 3 appear to show some general 
pattern. To motivate further research in this important problem, we summarize these patterns in the 
form of a conjecture:

Conjecture 8. In general, for m, k ∈ Z+ with m �= k, the solution set V∗(∇Wm,k) consists of a single compo-
nent of dimension

dimV∗(∇Wm,k) = mk + 2.

Furthermore, for m = 1 and m = 2, the degree of the solution set is given by

degV∗(∇W1,k) = 2 · degV∗(∇W1,k−1) = 2k−1

degV∗(∇W2,k) = 6 · degV∗(∇W2,k−1) + 22k−3 = 2 · 6k−1 +
k−2∑
j=0

22(k− j)−3 · 6 j

7. Concluding remarks

In this article we proposed a parallel algorithm for computing the degree of components of a 
C∗-solution set defined by a (Laurent) binomial system that is specifically designed for GPU devices. 
Rooted in the rich web of works on the mixed cell enumeration problem, the current contribution 
brings significant improvements over the existing methods in several different directions:

• Utilizing the special structure of binomial systems, this algorithm employs the “pivoting” process 
which was not used in the most efficient existing methods (Chen et al., 2014b; Gao and Li, 2003;
Lee and Li, 2011; Lee et al., 2008; Li and Li, 2001; Mizutani and Takeda, 2008; Mizutani et al., 
2007) (which depend on, exclusively, the “extension” process).

• With the goal of maximizing scalability, the two complementary processes “extension” and “piv-
oting” are combined via the use of a GPU managed hash table with minimum costs.

• In contrast to previous attempts, all computational intensive tasks are performed by GPUs in the 
proposed algorithm.

• Based on a formulation of the degree as the volume of a lattice polytope, the algorithm computes 
the degree without computing witness sets. In situations where witness sets are needed (for other 
operations in Numerical Algebraic Geometry), they can be computed by homotopies constructed 
as byproducts of the degree computation process. The benefit of this indirect approach is that the 
number of homotopy paths required is exactly the number of witness points.

Numerical experiments with the CUDA based implementation show remarkable performance and 
scalability in our case study of the N = 1 gauge theories.
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Appendix A. Kushnirenko/Bernshtein’s theorem

Theorem 9 (Kushnirenko, 1975; Bernshtein, 1975). Consider the system of k Laurent polynomial equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1,1xa(1) + c1,2xa(2) + · · · + c1,kxa(	) = 0

c2,1xa(1) + c2,2xa(2) + · · · + c2,kxa(	) = 0
...

ck,1xa(1) + ck,2xa(2) + · · · + ck,kxa(	) = 0

in k variables x = (x1, . . . , xk) in which every equation has the same set of monomials determined by exponent 
vectors a(1), . . . , a(	 ) ∈ Zk. For coefficients ci, j ∈ C∗ in a Zariski open and dense subset among all possible 
(complex) coefficients, the solutions of this system in (C∗)k are all isolated and nonsingular. The total number 
of these isolated solutions is

k! · Volk(conv{a(1), . . . ,a(	 )}).
In Bernshtein (1975), this theorem takes a significantly more general form where the number of 

isolated nonzero C∗-solutions of a system of a Laurent polynomial system is shown to be equal to 
the mixed volume of the Newton polytopes of the system. This number is known as the BKK bound of a 
Laurent polynomial system. Therefore, the degree computation discussed above can be considered as 
a special case of the BKK bound i.e. mixed volume computation.

Appendix B. Transformation matrices used in Smith Normal Form

In the Smith Normal Form decomposition A = P−1
[

D 0
0 0

]
Q −1 the transformation matrices P and 

Q are not unique. Suppose there is a different pair of unimodular matrices P̃ =
[

P̃r

P̃0

]
∈ Mn×n(Z)

where P̃0 ∈ M(n−r)×n(Z) and Q̃ ∈ Mm×m(Z) such that[
P̃r

P̃0

]
A
[

Q̃ r Q̃ 0
]=

[
D 0
0 0

]
.

Then we must have

P̃0 A = P̃0 P−1
[

D 0
0 0

]
Q −1 = [0 0

]
.

Recall that both P and Q are nonsingular, therefore

P̃0 P−1 = [0 G
]

for some matrix G ∈ M(n−r)×(n−r)(Z), and hence

P̃0 = [0 G
]

P = [0 G
][ Pr

P0

]
= G P0.

Moreover, since P0 and P̃0 consists of the n − r rows of the unimodular matrices P and P̃ respectively 
and hence must be of full rank, the matrix G must be nonsingular. Also note that

±1 = det P̃ P−1 = det

[
P̃r P−1

P̃0 P−1

]
=
[

P̃r P−1

0 G

]

therefore G must be unimodular. In other words, columns of P̃0 must be the images of columns of 
P0 under the linear transformation given by the unimodular matrix G .
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Appendix C. Parallel Smith Normal Form computation

As summarized in Proposition 1 and Proposition 3, the computation of Smith Normal Form of the 
exponent matrix A in the binomial system xA − b is a crucial preprocessing step for the algorithm 
proposed in this article.

One of the classic algorithms for computing the Smith Normal Form uses successive row and 
column reductions (see e.g., Cohen, 1993, Algorithm 2.4.14): Consider the special case where A =

[
a1
a2

]
with a1, a2 nonzero, that is, take n = 2 and m = 1. By Bézout’s identity, there exist s and t such that 
d := gcd(a1, a2) = s a1 + t a2. Let

P =
[

s t
− a2

d
a1
d

]
,

then det P = sa1+ta2
d = d

d = 1 and

P A =
[

s t
− a2

d
a1
d

][
a1
a2

]
=
[

sa1 + ta2
− a2a1

d + a2a2
d

]
=
[

d
0

]

Similarly, for the special case A = [ a1 a2 ], let Q =
[

s
−a2

d

t
a1
d

]
, then A Q = [

d 0
]
. In general, n × n

and m × m version of the above matrices P and Q can be constructed to perform row and column 
reduction respectively for a n × m integer matrix.

It can be shown that using repeated row and column reduction together with potential row 
and column permutations one can construct unimodular matrices P (1), . . . , P (k) ∈ Mn×n(Z) and 
Q (1), . . . , Q (	) ∈ Mm×m(Z) such that

P (k) · · · P (1) A Q (1) · · · Q (	) =

⎛
⎜⎜⎜⎜⎜⎝

d1

. . .
dr

0

. . .
0

⎞
⎟⎟⎟⎟⎟⎠

with r = rank A and d1, . . . , dr nonzero.
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