
Journal of Symbolic Computation 79 (2017) 535–558
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Parallel degree computation for binomial
systems

Tianran Chen a, Dhagash Mehta b,c

a Department of Mathematics, Michigan State University, East Lansing, MI, USA
b Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame,
IN 46545, USA
c Centre for the Subatomic Structure of Matter, Department of Physics, School of Physical Sciences, University of
Adelaide, Adelaide, South Australia 5005, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2015
Accepted 19 August 2015
Available online 16 July 2016

Keywords:
Binomial systems
Homotopy continuation
Algebraic geometry
BKK root-count
GPU computing
Supersymmetric gauge theories

Solution sets of systems of binomial equations are of great interest
in applied mathematics. For both theoretic and applied purposes,
the degree of a solution set (its maximum number of isolated inter-
sections with an affine space of complementary dimension) often
plays an important role in understanding its geometric structure.
This paper proposes a specialized parallel algorithm for computing
the degree on GPUs that takes advantage of the massively parallel
nature of GPU devices. The preliminary implementation shows re-
markable efficiency and scalability when compared to the closest
CPU-based counterpart. As a case study, the algorithm is applied to
the master space problem of N = 1 gauge theories. The GPU-based
implementation achieves nearly 30 fold speedup over its CPU-only
counterpart enabling the discovery of previously unknown results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of solving a system of polynomial equations is an important problem in compu-
tational mathematics. Of special interest is the problem of solving systems of binomial equations
(or simply binomial systems) for they appear naturally in many applications and specialized algo-
rithms exist (e.g., Kahle, 2010). In many applications, only the solutions of a binomial system for

E-mail addresses: chentia1@msu.edu (T. Chen), dmehta@nd.edu (D. Mehta).
http://dx.doi.org/10.1016/j.jsc.2016.07.018
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.07.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:chentia1@msu.edu
mailto:dmehta@nd.edu
http://dx.doi.org/10.1016/j.jsc.2016.07.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2016.07.018&domain=pdf

536 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
which no variable is zero are needed. That is, we are only interested in solutions inside (C∗)n where
C∗ = C \ {0}. The collection of such solutions is known as the C∗-solution set and will be the focus
of this article. Such a C∗-solution set of a binomial system has a well defined dimension and can be
decomposed into “irreducible components”. Of particular interest in the context of the present con-
tribution are the components of positive dimension (i.e., nonisolated solutions). The degree of each
component of positive dimension is the maximum number of points in the intersection of the com-
ponent with an affine linear space of complementary dimension.

Based on a class of algorithms for the related problem of “mixed volume computation” the present
article proposes a specialized numerical parallel algorithm for computing the degree of a C∗-solution
set of a system of binomial equations. The novel features of this algorithm include

• Specially designed for GPU (graphics processing unit) devices, this algorithm takes advantage of
the massively parallel nature of GPUs;

• Utilizing the special structure of binomial systems, this algorithm employs techniques that are
not available (or not known to be available) for the more general “mixed volume computation”
which greatly improves the overall efficiency;

• Based on a formulation of the degree as the volume of a lattice polytope, the algorithm computes
the degree without using any sample points of the solution set (e.g. “witness sets” in Numerical
Algebraic Geometry).

As a case study, we applied this algorithm to a family of binomial systems coming from particle
physics, called the master space of N = 1 gauge theories. The preliminary implementation for GPU
devices built on top of the NVidia CUDA framework has already shown promising results. In particular,
it outperforms existing CPU-based programs in both absolute efficiency and parallel scalability by a
large margin, and it produced previously unknown results. Remarkably, with multiple GPU devices
(on the same computer), the GPU based implementation exhibits much better performance, in many
cases, than small to medium sized computer clusters.

Though the main focus of this article is the parallel algorithm that directly computes the degree
of the C∗-solution set of a binomial system without using any sample points (e.g. “witness points”),
this algorithm actually generates, as by-products, information from which “witness sets” of each com-
ponent can be computed indirectly via a specialized homotopy continuation method. Developed in
Sommese and Wampler (1996) as the numerical representations of irreducible components of alge-
braic sets, “witness sets” are, in a sense, the fundamental data structure in the field of Numerical
Algebraic Geometry (Sommese and Wampler, 1996). The secondary contribution of this article is an
indirect homotopy-based method for computing the “witness set” of each irreducible component of a
positive dimensional C∗-solution set of a binomial system. The potential benefit of this approach is
that the number of homotopy paths required to compute a witness set (of a component) is exactly
the number of witness points in the set. That is, each homotopy path yields a unique witness point
and no paths diverge.

This article is structured as follows: First, necessary notation and concepts are introduced. In
particular, we shall review basic geometric properties of the C∗-solution set defined by a binomial
system. Then in §3 we propose a highly scalable parallel algorithm for computing the degree of the
C∗-solution set of a binomial system. Aiming to be self contained, the algorithm is presented without
direct reference to related concepts in “mixed volume computation”. In §5, however, this close tie is
discussed in detail. The construction of the specialized homotopies for computing witness sets is de-
scribed in §4. The case study, of the master space of N = 1 gauge theories, arising from string theory,
is presented in §6, and we show the previously unknown results obtained by the proposed parallel
algorithm. Certain technical but necessary results are included in the appendix for completeness.

2. Laurent binomial systems and their solution sets

We first review necessary concepts and notation. For positive integers m and n, let Mn×m(Z)

denote the set of all n ×m integer matrices. A square integer matrix is said to be unimodular if its de-
terminant is ±1. Note that such a square matrix A ∈ Mn×n(Z) has a unique inverse A−1 = 1

det A adj A

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 537
that is also in Mn×n(Z), where adj A is the adjugate matrix of A. The n ×n identity matrix in Mn×n(Z)

is denoted by In .
The theoretical tools involved in this article are more naturally developed in the context of the

more general “Laurent binomial systems” where negative exponents are allowed. For variables x =
(x1, . . . , xn), a Laurent monomial in x is an expression of the form xa1

1 · · · xan
n where a1, . . . , an ∈ Z

(which may be zero or negative). For convenience, we shall write a = (a1, . . . , an)� ∈ Zn and use the
“vector exponent” notation

xa = (x1, . . . , xn)

⎛
⎜⎝

a1

...
an

⎞
⎟⎠

= xa1
1 · · · xan

n

to denote a Laurent monomial. Similarly, for an integer matrix A ∈ Mn×m(Z) with columns
a(1), . . . , a(m) ∈ Zn , the “matrix exponent” notation will be used for an m-tuple of Laurent mono-
mials:

xA = x

(
a(1) · · · a(m)

)
:= (xa(1)

, . . . , xa(m)

). (1)

This notation is particularly convenient since the familiar identities xIn = x and (xA)B = xAB still hold.
Each matrix A ∈ Mn×m(Z) induces a function from (C∗)n to (C∗)m given by x �→ xA . Of particular im-
portance is the function induced by a unimodular matrix A ∈ Mn×n(Z) since A−1 is also in Mn×n(Z),
and hence functions x �→ xA and x �→ xA−1

are the inverses of each other ((xA)A−1 = xA A−1 = xIn = x).
A Laurent binomial is an expression of the form c1xα + c2xβ for some c1, c2 ∈ C∗ and α, β ∈ Zn .

This article focuses on the properties of the solution set of systems of Laurent binomials equations, or
simply Laurent binomial systems, over (C∗)n . Stated formally, given exponent vectors α(1), . . . , α(m),

β(1), . . . , β(m) ∈ Zn and the coefficients ci, j ∈ C∗ , the goal is to describe the set of all x ∈ (C∗)n that
satisfies the system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
c1,1 xα(1) + c1,2 xβ(1) = 0

...

cm,1xα(m) + cm,2xβ(m) = 0.

(2)

Since only the solutions in (C∗)n are concerned, this system is clearly equivalent to

(xα(1)−β(1)

, . . . , xα(m)−β(m)

) = (−c1,2/c1,1, . . . ,−cm,2/cm,1).

With the more compact “matrix exponent” notation in (1), this system can simply be written as

xA = b or equivalently xA − b = 0 (3)

where the integer matrix A ∈ Mn×m(Z), having columns α(1) − β(1), . . . , α(m) − β(m) , represents the
exponents appeared in the Laurent monomials and the vector b = (−c1,2/c1,1, . . . , −cm,2/cm,1)

� ∈
(C∗)m collects all the coefficients. The solution set of (3) over (C∗)n shall be denoted by

V∗(xA − b) = {x ∈ (C∗)n | xA − b = 0}. (4)

Note that V∗(xA − b) is quasi-projective since it is the complement of the (complex) algebraic set
Cn \ (C∗)n = {(x1, . . . , xn) | x1 · · · xn = 0} within the (complex) solution set of the original binomial
system (2). In the context of algebraic geometry, such a set has a well defined dimension and ir-
reducible decomposition (its decompositions as a union of “irreducible components”). Moreover, the
concept of degree can be defined for each of its irreducible component (which depends on the defin-
ing equation xA − b). In the following, we shall review the main structural theorem that ties these
properties directly to the properties of the matrix A. Since the explicit “global parametrization” (to be
described in Proposition 1) is needed in the formulation of the degree computation problem, a brief
derivation of these results is therefore included. A more detailed summary can be found in the article

538 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
by Chen and Li (2014). In depth theoretical discussions can be found in standard references such as
Cox et al. (2011), Eisenbud and Sturmfels (1996), Fulton (1993), Miller and Sturmfels (2005), Sturmfels
(1997). Certain computational aspects have been studied in Kahle (2010), Kahle and Miller (2014).

An important tool in understanding the structure of V∗(xA − b) is the Smith Normal Form (Smith,
1861) of the exponent matrix A ∈ Mn×m(Z): there are unimodular square matrices P ∈ Mn×n(Z) and
Q ∈ Mm×m(Z) such that

P A Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
. . .

dr

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn×m(Z) (5)

with nonzero integers d1 | d2 | · · · | dr for r = rank A. Here, a | b means a divides b as usual. The
nonzero diagonal elements d1, . . . , dr are unique up to the signs and known as invariant factors of A.
The transformation matrices P and Q , however, are not unique in general. Although they are to used
in following structural description of V∗(xA −b), the description itself is independent from the choices
of P and Q . This subtle point will be clarified in Remark 4.

Let Pr ∈ Mr×n(Z) and P0 ∈ M(n−r)×n(Z) be the top r rows and the remaining n − r rows of P in
(5) respectively. Similarly, let Q r ∈ Mm×r(Z) and Q 0 ∈ Mm×(m−r)(Z) be the left r columns and the
remaining m − r columns of Q respectively. With these notations, the Smith Normal Form of (5) of A
can be written as(

Pr

P0

)
A
(

Q r Q 0
)=

(
D 0
0 0

)
(6)

with D = diag(d1, . . . , dr) ∈ Mr×r(Z) and 0’s representing zero block matrices of appropriate sizes.
With this we can transform the binomial system xA = b into a form from which the structure of the
C∗-solution set can be easily extracted.

Since P and Q are both unimodular the maps z �→ zP and y �→ y Q are bijections on (C∗)n and
(C∗)m respectively. Therefore, as far as the C∗-solution set is concerned, the original system xA = b
is equivalent to (xA)Q = xA Q = bQ . Similarly, the solution set remains equivalent after the change of
variables x = zP , which produces

(zP)A Q = zP A Q = z

(
D 0
0 0

)
= (z

(
D
0

)
, z

(
0
0

)
) = bQ = (bQ r ,bQ 0) .

Since D = diag(d1, . . . , dr) ∈ Mr×r(Z), this system can be decomposed into a combined system

(zd1
1 , . . . , zdr

r) = bQ r (7)

1 = bQ 0 (8)

zr+1, . . . , zn : free (9)

where (8) appears when r < m with 1 = (1, . . . , 1) ∈ (C∗)m−r , and (9) appears when r < n. The word
“free” in (9) means the system imposes no constraints on the n − r variables zr+1, . . . , zn . It is clear
that if r < m, then the system is inconsistent unless 1 = bQ 0 . If the system is consistent (namely,
(8) holds), then the solutions to (7) are exactly⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z1 = e2k1π/d1ζ1 for k1 = 0, . . . ,d1 − 1

z2 = e2k2π/d2ζ2 for k2 = 0, . . . ,d2 − 1
...

zr = e2krπ/dr ζr for kr = 0, . . . ,dr − 1

(10)

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 539
where each ζ j is a fixed choice of the d j-th root of the j-th coordinate of bQ . Clearly, all of
them are isolated and the total number of these solutions is precisely

∏r
j=1 |d j | = | det D|. If r < n,

then the C∗-solution set of the decomposed system (7)–(9) breaks into “components” of the form
{(e2k1π/d1ζ1, . . . , e2krπ/dr ζr, zr+1, . . . , zn) : (zr+1, . . . , zn) ∈ (C∗)n−r}, and they are in one-to-one corre-
spondence with solutions in (10). Since each component is parametrized by the n − r free variables
zr+1, . . . , zn , it is smooth and of dimension n − r.

To translate the above description of the (C∗)n-solution set of the decomposed system (in z) into
a description of the original solution set V∗(xA − b), one may simply apply the change of vari-
ables x = zP . Note that this map and its inverse z = xP−1

are both given by monomials (bi-regular
maps (Hartshorne, 1977)), the basic properties of the solution set, such as, the number of solution
components, their dimensions, and smoothness are therefore preserved. To summarize, under the as-
sumption that the solution set is of positive dimension (that is r < n), the above elaborations assert
the following proposition.

Proposition 1 (Global parametrization (Eisenbud and Sturmfels, 1996; Kahle, 2010; Sturmfels, 1997)). For the
solution set V∗(xA − b) in (C∗)n, let P , Q , Q 0 and D be those matrices that appeared in the decompositions
of A in (5) and (6). Assume r := rank A < n.

If r < m and 1 �= bQ 0 then the binomial system is inconsistent, and therefore V∗(xA − b) =∅.
Otherwise (if r = m or 1 = bQ 0) V∗(xA − b) consists of

∏r
j=1 |d j | = | det D| components Vk1,...,kr for

k1 ∈ {0, . . . , |d1| − 1}, . . . , kr ∈ {0, . . . , |dr | − 1}. Each component Vk1,...,kr is smooth of dimension n − r, and
it is parametrized by the smooth global parametrization φk1,...,kr : (C∗)(n−r) → Vk1,...,kr given by

φk1,...,kr (t1, . . . , tn−r) = (e2k1π/d1ζ1, . . . , e2krπ/dr ζr, t1, . . . , tn−r)
P (11)

where each ζ j is a fixed choice of the d j-th root of the j-th coordinate of bQ .

Here we focus on the positive dimensional case. That is, in the following we restrict our attention
to cases where n − r > 0 and the system is consistent. In this situation, for both theoretical interests
and demands from concrete applications, one often wishes to identify another important property: the
degrees of each component in V∗(xA − b). Degree is a classic concept developed for plane algebraic
curves. For example, the quadratic equation y − x2 = 0 defines a curve of degree 2, i.e., the parabola.
The generalized notation of degree for irreducible algebraic sets is usually formulated algebraically via
Hilbert Polynomials. In this article, following the common practice of Numerical Algebraic Geometry,
we shall take a geometric approach: Let V = Vk1,...,kr be a component of V∗(xA − b) for some fixed
choice of k1, . . . , kn as defined in Proposition 1. The number of isolated intersection points between
V and a “generic” affine space of complementary dimension is a fixed number, and this number is
the degree of V , denoted by deg V .

Stated more precisely, let Gr be the set of all affine space in Cn of dimension r = n − dim V . Then
it can be shown that in a fixed open and dense subset of Gr , all the affine spaces intersect with V
at a fixed number of isolated points. This geometric interpretation of degree is explained in Fulton
(1998), Hartshorne (1977), Sommese and Wampler (2005).

From a computational standpoint, a generic affine space in Gr can be represented by the solution
set of a system of d := n − r linear equations with generic coefficients.1 Therefore deg V is precisely
the number of points x = (x1, . . . , xn) ∈ V that satisfies the linear system

1 The representation of affine spaces by linear systems of equations is clearly not a one-to-one correspondence. E.g. for a
matrix L, Lx + b = 0 and GLx + Gb = 0 define the same affine space for any nonsingular square matrix G of the appropriate
dimension. The refined parametrization of the affine spaces is given the Grassmannian. However, in the current context, the
representation by linear systems is sufficient as the fixed Zariski open and dense subset of r-dimensional affine spaces from
which the deg V can be defined also corresponds to a Zariski open and dense subset among the linear systems (in terms of
their coefficients).

540 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
⎧⎪⎪⎨
⎪⎪⎩

c11x1 + c12x2 + · · · + c1nxn = c10

...

cd1x1 + cd2x2 + · · · + cdnxn = cd0

(12)

where ci j ’s for i = 1, . . . , d and j = 0, . . . , n are generic complex numbers (that is, (ci j)i=1,...,d, j=0,...,n

belongs to a Zariski open and dense subset of Cd×(n+1)). But recall that the set V = Vk1,...,kr is pre-
cisely the image of the injective map

φk1,...,kr (t1, . . . , td) = (e2k1π/d1ζ1, . . . , e2krπ/dr ζr, t1, . . . , td)
P

in Proposition 1. If we let ξ = (e2k1π/d1ζ1, . . . , e2krπ/dr) and t = (t1, . . . , td) then

φk1,...,kr (t) = (ξ, t)

(
Pr
P0

)
= (ξ p(1)

r t p(1)
0 , . . . , ξ p(n)

r t p(n)
0)

where for each j = 1, . . . , n, p(j)
r and p(j)

0 are the j-th columns of Pr and P0 respectively. In other

words, V has the global parametrization xi = ξ p(1)
r t p(1)

0 . Therefore the intersections between V and
the generic affine space defined by (12) are precisely the solutions of the polynomial system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c11 ξ p(1)
r t p(1)

0 + c12 ξ p(2)
r t p(2)

0 + · · · + c1n ξ p(n)
r t p(n)

0 = c10

...

cd1 ξ p(1)
r t p(1)

0 + cd2 ξ p(2)
r t p(2)

0 + · · · + cdn ξ p(n)
r t p(n)

0 = cd0

By letting c′
i j := ci jξ

p(j)
r and c′

i0 := ci0 for each i = 1, . . . , d and j = 1, . . . , n, the above is a system of
d Laurent polynomial equations in variables t = (t1, . . . , td) with coefficients c′

i j and the same set of

monomials t p(j)
0 , . . . , t p(j)

0 .

Note that the transformation from (ci j) to (c′
i j), given by c′

i j := ci jξ
p(j)

r ∈ C for j �= 0, is a non-
singular linear transformation which can be represented by a diagonal matrix with nonzero entries
ξ p(j)

r (since ξ ∈ (C∗)r). This linear transformation preserves the Zariski topology. In other words, the
“generic” choices of (ci j) translate to “generic choices” of (c′

i j). We summarize the above elaboration
into the following proposition.

Proposition 2 (Degree via affine space cut). Assuming V∗(xA − b) is d-dimensional, then the degree of a
component V of V∗(xA − b) is the number of solutions t ∈ (C∗)d of the system of d Laurent polynomial
equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c11t p(1)
0 + c12t p(2)

0 + · · · + c1nt p(n)
0 = c10

...

cd1t p(1)
0 + cd2t p(2)

0 + · · · + cdnt p(n)
0 = cd0

(13)

for coefficients (ci j) in a fixed Zariski open and dense subset of (C∗)d×(n+1) .

It is important to note that for generic coefficients, the C∗-solutions of the above system are
all isolated (0-dimensional), and the total number is a constant. By the Kushnirenko’s Theorem
(Kushnirenko, 1975) (or the more general Bernshtein’s Theorem (Bernshtein, 1975; Huber and Sturm-
fels, 1995)), this number can be expressed in terms of the volume of the Newton polytope of the above

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 541
system which is the convex hull of the set of n points p(1), . . . p(n), 0 in Rd .2 Here we state the result
in the context of degree computation and leave the technical statement of the theorem, as well as its
related concepts to Appendix A.

Proposition 3 (Degree as volume). The generic number of isolated solutions t ∈ (C∗)d of the system of Laurent
polynomial equation (13) and hence the degree of V is

deg V = d ! · Vold(conv{p(1)
0 , . . . , p(n)

0 ,0}) (14)

where 0 = (0, . . . , 0)� ∈ Rd and columns p(1)
0 , . . . , p(n)

0 of the matrix P0 are considered as points in Rd. The
notation conv denotes the operation of taking convex hull, and Vold is the volume of a convex body in Rd.

With this formulation, the degree of a component of V∗(xA − b) can be computed efficiently
through methods in combinatorial geometry.

Remark 4. Recall that while the Smith Normal Form
[

D 0
0 0

]
of A is unique up to a change of signs of

the diagonal entries in D , the transformation matrices P and Q are generally not unique. However,
different choices of the transformations will produce the same value for deg V as given in (14). This
invariance is best understood via the notion of “local degree” (Gelfand et al., 1994) of a component V
of V∗(xA − b) which is a generalization of the concept of multiplicity and naturally independent from
the transformation matrices P and Q used in the Smith Normal Form computation. This approach,
however, requires more advanced mathematical tools. We therefore provide a simple geometric justi-
fication:

Suppose there is a different pair of unimodular matrices P̃ =
[

P̃r

P̃0

]
∈ Mn×n(Z) where P̃0 ∈

M(n−r)×n(Z) and Q̃ ∈ Mm×m(Z) such that[
P̃r

P̃0

]
A
[

Q̃ r Q̃ 0
]=

[
D 0
0 0

]
.

Then it can be shown that there is a unimodular matrix G ∈ M(n−r)×(n−r)(Z) such that

P̃0 = G P0.

The simple proof is included in the Appendix B. Since G is unimodular, that is | det G| = 1, it does not
change the volume of the “parallelepiped” spanned by the columns of P0 (as vectors). In other words,
letting p̃(1)

0 , . . . , p̃(n)
0 be the columns of P̃0, then

Vold(conv{p(1)
0 , . . . , p(n)

0 ,0}) = Vold(conv{p̃(1)
0 , . . . , p̃(n)

0 ,0}).
Therefore, the volume expression used in Proposition 3, despite the apparent dependency, is actually
independent from the choices of transformation matrices used in (5).

3. Parallel degree computation

Proposition 3 provides a computationally viable means for computing the degree of each com-
ponent as the normalized volume of a convex polytope. In this section we shall present a parallel
algorithm for computing the degree that is suitable for both multi-core systems and GPUs, though
the focus is the GPU-based implementation. In this section we focus on the computation of (14). Let
S = {p(1)

0 , . . . , p(n)
0 } ⊂Rd , then

2 In Gelfand et al. (1994) the degree is shown to be equivalent to the “local degree” at a certain point which, in turn, is proved
to be the volume of the Newton polytope. The Kushnirenko’s Theorem is then derived as a corollary of this fact. However, the
original proof of Bernshtein’s Theorem and the alternative proof provided by Huber and Sturmfels (1995) do not make direct
use of the expression of the degree of the C∗-solution set of a binomial system.

542 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
deg V = d !Vold(conv S). (15)

For brevity, let NVold = d ! Vold be the normalized volume in Rd , then the above equation becomes

deg V = NVold(conv S) (16)

Therefore the problem of finding deg V is equivalent to the computation of the normalized volume of
a lattice polytope (a polytope whose vertices have integer coordinates).

Remark 5. Clearly, (15) and (16) are equivalent. However, from the computational point of view, there
is one crucial distinction: The knowledge that NVold(S) must be an integer permits the use of efficient
but potentially less accurate numerical methods using floating point arithmetic and still obtain the
correct result. Indeed, the exact results can still be obtained as long as the total absolute error is kept
below 1/2. This is not possible for methods that are designed to compute volume of more general
polytopes. The algorithm, for computing (16), to be presented below, is hence not directly comparable
to exact volume computation algorithms (Bárány and Füredi, 1987; Büeler et al., 2000) for general
polytopes.

3.1. Regular simplicial subdivision

Among many different approaches for computing the normalized volume, here we adopt a classic
technique known as regular simplicial subdivision (Loera et al., 2010) as this approach produces an im-
portant byproduct that will be used in the computation of witness set, which will be the subject of §4.
In this approach, we are interested in computing the normalized volume NVold(conv S) by dividing
the lattice polytope conv S into a collection of smaller pieces for which the volume computation is
easy. Without loss of generality, we assume S has no interior points, that is, no point in S lies in the
interior of conv S .

Definition 6. A cell of S is simply an affinely independent subset of S . A simplicial subdivision of S
is a collection D of cells of S , such that

1. For each C ∈D, conv C is a d-simplex inside conv S;
2. For any distinct pair of simplices C1, C2 ∈D, the intersection of conv C1 and conv C2, if nonempty,

is a common face of the two; and
3. The union of convex hulls of all cells in D is exactly conv S .

A simplicial subdivision plays an important role in computing NVold(conv S): the normalized vol-
ume of a d-simplex in Rd is easy to compute: given a d-simplex � = conv{a0, . . . , ad} ⊂ Zd ,

NVold(�) = |det
[

a1 − a0 · · · ad − a0
] |. (17)

So the volume of conv S can be computed easily as the sum of the volume of all simplices in D.
Note that the simplicial subdivision for a given polytope is, in general, not unique, and there are

many different approaches for constructing them. Here we focus on the approach of regular simplicial
subdivision: One can define a “lifting function” ω : S → R by assigning a real number to each point
in S . For each point a ∈ S , a new point (a, ω(a)) ∈ Rn can be created by using ω(a) as an additional
coordinate. This procedure “lifts” points of S into Rd+1, the space of one higher dimension. Let

Ŝ = {â = (a,ω(a)) | a ∈ S} (18)

be the lifted version of S via the lifting function ω. Figs. 1a and 1b show examples of this lifting
procedure. Let π : Rd+1 →Rd be the projection that simply erases the last coordinate, then π(Ŝ) = S .

Recall that for a face F̂ of the lifted polytope conv Ŝ , its inner normal is a vector α̂ ∈ Rd+1 such
that the linear functional 〈•, α̂〉 attains its minimum over conv Ŝ on F̂ . Moreover, a face F̂ of conv Ŝ is
called a lower face with respect to the projection π if its inner normal α̂ has positive last coordinate.
Without loss of generality, in this case, we may assume the last coordinate of α̂ to be 1, that is,

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 543
Fig. 1. Regular simplicial subdivision via generic lifting.

α̂ = (α1, . . . , αn, 1) ∈ Rd+1. It can be shown that if the lifting function ω : S → R is chosen so that
no j + 2 points in Ŝ are contained in a j-dimensional affine space, then the projections of all the
d-dimensional lower faces of conv Ŝ via π form a simplicial subdivision for conv S which is called a
regular simplicial subdivision of conv S . Such a lifting function is called generic (with respect to S). In
particular, if the liftings are randomly picked, then with probability one, the lifting function will be
generic. The construction of this simplicial subdivision is therefore equivalent to the enumeration of
all the lower faces of conv Ŝ .

Example 7. Consider, for example, S = {(0, 0), (0, 1), (1, 1), (1, 0)} in the xy-plane. A simplicial subdi-
vision of conv S can be obtained via the following procedure: First assign “liftings” ω1, ω2, ω3, ω4 ∈ R

to each of the vertices as the z-coordinate and obtain new points (0, 0, ω1), (0, 1, ω2), (1, 1, ω3),
(1, 0, ω4) in R3. It is easy to verify that with almost all choices of the liftings the four “lifted”
points (Fig. 1a) do not lie on the same plane. In that case, the convex hull conv{(0, 0, ω1), (0, 1, ω2),

(1, 1, ω3), (1, 0, ω4)} of the four lifted vertices form a three dimensional polytope (Fig. 1b) with tri-
angle faces. Of particular importance is the lower hull of this polytope which is the faces facing
downward. As shown in Fig. 1c, the projection of the faces in the lower hull back onto the xy-plane
forms a simplicial subdivision of the original shape conv S .

Algebraically speaking, a d-dimensional lower face of conv S is the convex hull of a set of d + 1
points {â0, . . . , ̂ad} ⊂ Ŝ for which there exists a α̂ = (α, 1) ∈ Rd+1 such that the system of inequalities

I(a0, . . . ,ad) :
{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â0, α̂〉 ≤ 〈â, α̂〉 for a ∈ S
(19)

is satisfied. In other words, the existence of the lower face defined by {â0, . . . , ̂ad} ⊂ Ŝ is equivalent
to the feasibility of the above system of inequalities I(a0, . . . , ad). This algebraic description of the
lower faces is the basis on which enumeration methods are developed. In the following subsections,
we shall present an approach that results in a parallel algorithm which is suitable for both multi-core
systems and GPU devices. In this approach, we employ two complementary processes of “extension”
and “pivoting”. We shall outline them below.

3.2. Extension of k-faces

Intuitively speaking, in the extension process, one starts with the vertices of the lower hull of
conv Ŝ . For each of these vertices, systematic attempts are made to “extend” it by finding another
lower vertex so that the two vertices form a “lower edge” (an edge on the lower hull of conv Ŝ). The
possible extensions may not be unique, and for each possibility, further attempts are made to extend
it to 2-dimensional lower faces. This process continues until one reaches all the d-dimensional lower
faces. Finally, the collection of such d-dimensional lower faces will project down, via π , to form a
simplicial subdivision for conv S .

To describe this process, we first extend the characterization (19) to include lower faces of all
dimensions: A set of affinely independent k + 1 points in Ŝ is said to determine a lower k-face if
their convex hull forms a k-dimensional lower face of conv Ŝ with respect to the projection π . Stated

544 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Fig. 2. A directed acyclic graph of possible lower k-faces.

Fig. 3. A direct graph of possible lower k-faces colored by the feasibility of the corresponding system of inequalities.

algebraically, the affinely independent set {a0, . . . , ak} determines a lower k-face if and only if there
exists an α̂ = (α, 1) ∈ Rd+1, such that the system of inequalities

I(a0, . . . ,ak) :
{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,k

〈â0, α̂〉 ≤ 〈â, α̂〉 for a ∈ S
(20)

is satisfied.
Geometrically, a lower 0-face is a vertex on the lower hull of conv Ŝ , and a lower 1-face is simply

a lower edge, etc. We can conveniently organize all possible system of inequalities of the above form
into a directed acyclic graph, as illustrated in Fig. 2, where each node represents a system of inequalities
and there is an edge from I(A) to I(B) whenever B is obtained by joining new points in S into A.
With this construction, the resulting graph is graded by the number of points involved.

It can be easily verified that for generic lifting function ω, containment relation between lower
k-faces of the same dimension is impossible. That is, for a fixed k, no lower k-face is contained in
another lower k-face. Therefore the graph describes precisely the containment relationship among
possible lower k-faces.

A node is said to be feasible if the corresponding system of inequality is feasible. Fig. 3 shows an
example of the labeling of the graph via the feasibility of the nodes: dark for infeasible nodes and
white for feasible ones. Recall that a node determines a lower k-faces if and only if it is feasible.
Hence we only need to explore the feasible subgraph (the white subgraph in Fig. 3).

One crucial observation is that if two points do not define a lower edge, then they cannot be a
part of any lower faces. More generally, if a set of points does not define a lower k-face, then there
are no lower j-faces containing them for any j > k. Stated formally, for F̂1 ⊂ Ŝ ,

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 545
Fig. 4. Simplicial pivoting procedure moves from one lower face to another.

I(F̂1) is infeasible =⇒ I(F̂) is infeasible for all F̂1 ⊂ F̂ ⊂ Ŝ.

In terms of the graph, if a node is infeasible, then the entire subgraph reachable by that node is
infeasible. Therefore during the exploration of the graph, once an infeasible node is encountered,
no further exploration from that node is needed as all nodes reachable are infeasible. This simple
observation produces significant savings in terms of computation.

A key procedure in the exploration of the feasible subgraph is the jump from one feasible node to
another along an edge. Assuming, for some {a0, . . . , ak} ⊂ S , the node I(a0, . . . , ak) is feasible, then
the feasibility of an adjacent node, say via the edge corresponds to ak+1, can be determined by solving
the linear programming problem L P (a0, . . . , ak ; ak+1) given by

Minimize 〈âk+1, α̂〉 − 〈â0, α̂〉

subject to

{ 〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,k

〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S

(21)

in the variable α̂ = (α, 1) for α ∈Rd .
Note that under the constraints, the value of the objective function must be nonnegative. In-

deed, the minimum value of 0 is attainable precisely when there is an α̂ for which the constraints
are satisfied and simultaneously 〈âk+1, α̂〉 = 〈â0, α̂〉. That is, minimum value is 0 if and only if
I(a0, . . . , ak, ak+1) is feasible. In this case, the new feasible node I(a0, . . . , ak, ak+1) is discovered. Ge-
ometrically, we have “extended” the lower k-face determined by {â0, . . . , ̂ak} into a lower (k + 1)-face
by joining it the new vertex âk+1.

Using the extension procedure as a basic building block, one can gradually explore the feasible
subgraph in an inherently parallel manner: different branches of the spanning tree of the subgraph
can be explored independently.

3.3. Simplicial pivoting

The extension procedure described above can be complemented by another process, called “simpli-
cial pivoting”, that explores the feasible subgraph by “moving sideways” in the graph from one lower
d-face to another.

This process starts with a lower d-face of conv Ŝ already obtained (which corresponds to a cell in
the regular simplicial subdivision). Consider, for example, one of the lower faces shown in Fig. 4. Using
an edge as a hinge, we shall “pivot” one lower face until another lower face is obtained. More gener-
ally, recall that a lower d-face is determined by a set of d + 1 affinely independent points {â0, . . . , ̂ad}
in Ŝ that has an inner normal of the form α̂ = (α, 1) with α ∈ Rd+1. Stated algebraically, the system
of inequalities

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S
(22)

is satisfied. Note that the d equalities form a system of d linearly independent constrains on α ∈ Rd

and hence uniquely determine α. By removing a single equality from the above system, we give the

546 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Fig. 5. Via the pivoting procedure, one moves from a simplex (a) to a different simplex (b) by leaving a chosen vertex and then
to yet another simplex (c).

inner normal α̂ one degree of freedom which would allow it to “pivot”. The goal is to let it pivot until
it defines a different lower d-face.

For any choice i = 0, . . . , d, with the equality corresponding to âi in the above system (22) re-
moved, the inner normal α̂ = (α, 1) ∈ Rd , now with one degree of freedom, is characterized by the
system

P (a0, . . . ,ad ; i) :

⎧⎪⎨
⎪⎩

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d, but j �= i

〈â0, α̂〉� 〈âi, α̂〉
〈â0, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S

(23)

Note that this system has d − 1 equalities. If a solution with d equalities exists, then that solution
corresponds to a different lower d-face (i.e. a different cell in the resulting subdivision). In the context
of Linear Programming, such a solution is called a basic feasible solution. The problem of finding a
basic feasible solution is known as the Phase One problem in Linear Programming. It can be solved
accurately and efficiently.

This procedure is called “simplicial pivoting”. It allows us to pivot from one lower d-face to another.
By repeatedly applying this procedure, more lower d-faces can be gathered. Fig. 5 illustrates this
process.

3.4. Traverse the feasible subgraph

In the above we have formulated the enumeration of lower d-faces as the problem of exploring
the feasible subgraph which contains them as a subset. We also have two procedures for “walking”
within the graph: The extension procedure moves from one lower face to another of one higher
dimension while the pivoting procedure jumps from one lower d-face to another lower d-face. With
these building blocks in place, the exploration can be handled by a classic graph traversal algorithm fol-
lowing a “discover-and-explore” scheme. This algorithm can be implemented to exploit the inherent
parallelism: the neighbors of each discovered node can be explored independently. The detailed de-
scriptions of such an algorithm can be found in standard text in parallel algorithms (e.g. Skiena, 2009;
Herlihy and Shavit, 2012). Of particular relevance is the adoption of such graph traversal algorithm
in the context of “mixed cell enumeration”. The connection is discussed in §5. Here we focus on the
issues specific to an efficient GPU-based implementation.

One important problem we must deal with, in the parallel algorithm, is that same nodes may
be discovered by different threads at the same time. Since the degree is the sum of the normalized
volume of the projection of all the lower d-faces which are represented by the nodes in the fea-
sible subgraph, duplicated nodes will produce incorrect results. Therefore, an efficient and scalable
mechanism for ensuring no duplicated lower d-faces are listed is the key to the correctness of the
algorithm.

This mechanism appears to be the bottleneck, in terms of performance, in related algorithms with
similar organization (see §5). Our experiments confirm that an inefficient checking mechanism would
be the limiting factor of the scalability in a parallel implementation. Since on a GPU, it is typical to
have thousands of threads active simultaneously, the efficiency of such a mechanism is crucial.

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 547
In the present contribution, the hash table data structure is used to keep track of the nodes, in
the graph, that have been discovered or completely-explored. The great advantage of this choice is
that unlike a sorted data structure, hash table provides nearly constant access time, in most cases. In
our current implementation, for simplicity, the well-tested bit-string hash function from the standard
C++ library is used.3 Our experiments suggest that a hash table with 216 to 220 entries4 is sufficient
for all problems considered in our numerical experiments to be presented in §6 in the sense that the
collision rate within hash table access can be virtually ignored.

3.5. Summary of the algorithm

In the above, we formulate the degree computation for solution components defined by binomial
systems as the exploration of the feasible subgraph to be accomplished by the two complementary
processes: extension and pivoting. In this section, we list the main algorithms.

These algorithms are designed for a system with one or more GPU devices and a single CPU with
the GPU performing most of the computationally intensive tasks. For simplicity, we restrict ourselves
to modern GPUs manufactured by NVidia and build our program based on NVidia CUDA (a GPU pro-
gramming framework). The GPU devices must share memory with the CPU since they must all have
access to data structures WaitingNodes, KnownNodes, and NewNodes (to be defined below). In
the current implementation, this is accomplished via a technique known as pinned memory (NVIDIA
Corporation, 2011) provided by the CUDA framework which allows the efficient sharing of data be-
tween GPU devices and the CPU without explicit copying.

In the following algorithms, the list WaitingNodes contains nodes whose feasibility is to be
determined by the extension procedure. Cells is the unordered collection of lower d-faces already
discovered. KnownNodes is the hash table that records the discovery of nodes, and it is crucial
mechanism by which we ensure the uniqueness of the discovered nodes. Finally, NewNodes is an
unordered list that keeps track of nodes discovered through pivoting or extension. They need to be
checked against KnownNodes for uniqueness.

Random is a function that randomly chooses an item from a collection using pseudo random
number generator. The randomness is employed to achieve a more uniform performance from one
run to another for the sole purpose of simplifying the benchmarking process. SimplexPhaseOne and
SimplexPhaseTwo are the phase-one and phase-two algorithms of the simplex method for the linear
programming problems (21) and (23) respectively. Even though, at over 3000 lines, the C++ code for
these two components are the longest and most complicated parts of the entire program, they have
been a fixture of the long line of “mixed volume computation” software developed over the last two
decades whence the present work inherits much of its techniques and design. Therefore we choose to
not describe them in detail and refer to works such as Chen et al. (2014b), Gao and Li (2000, 2003),
Lee and Li (2011), Li and Li (2001), Mizutani and Takeda (2008), Mizutani et al. (2007).

The Extend procedure tests the feasibility of a node (see §3.2) in the waiting list WaitingNodes,
and it is designed to run simultaneously on all available threads across all GPU devices.

1: function Extend

2: if WaitingQueue �=∅ then
3: {a0, . . . , ak} ← Dequeue(WaitingQueue)
4: F ← SimplexPhaseTwo(L P ({a0, . . . , ak}))
5: if F �= ∅ then
6: NewNodes ← NewNodes∪ {F }
7: end if
8: end if
9: end function

3 The specialized hash function for bit-strings (std::bitset) is a new addition to C++11 standard. In our implementation, the
version as in LLVM (The LLVM Compiler Infrastructure Project) was used.

4 Each entry is a 32-bit integer that represents the index of a known node which, in turn, corresponds to a cell in the regular
simplicial subdivision of conv S .

548 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
The Pivot procedure implements the simplicial pivoting process detailed in §3.3, and it is designed
to run simultaneously on all available threads across all GPU devices. It picks a random lower d-face
already discovered and applies simplicial pivoting to potentially obtain a new lower faces. Just like
the Extend procedure above, newly discovered nodes will be placed in the NewNodes list.

1: function Pivot

2: if Cells �= ∅ then
3: {a0, . . . , ad} ← Random(Cells)
4: 	 ← min(d + 1, 10)

5: for i = 1, . . . , 	 do
6: j ← Random({0, . . . , d})
7: F ← SimplexPhaseOne(P ({a0, . . . , ad} \ {a j}))
8: if F �= ∅ then
9: NewNodes ← NewNodes∪ {F }

10: end if
11: end for
12: end if
13: end function

The procedure CheckUniq checks newly discovered nodes against the hash table KnownNodes to
make sure they have not already been discovered. It will run on a GPU device with a large number of
threads simultaneously checking the uniqueness of all nodes in the list of NewNodes.

1: function CheckUniq

2: if NewNodes �=∅ then
3: {a0, . . . , ak} ← Dequeue(NewNodes)
4: if {a0, . . . , ak} /∈ KnownNodes then
5: KnownNodes= KnownNodes∪ {F }
6: if k = d + 1 then
7: Cells= Cells∪ {{a0, . . . , ak}}
8: else
9: for all a ∈ S \ {a0, . . . , ak} do

10: if {a0, . . . , ak, a} /∈ KnownNodes then
11: WaitingQueue= WaitingQueue∪ {{a0, . . . , ak, a}}
12: end if
13: end for
14: end if
15: end if
16: end if
17: end function

Finally, the main procedure, which runs on the CPU, coordinates all the different processes.

1: function Main

2: WaitingNodes ← S
3: while WaitingNodes �= ∅ do
4: Run Extend on available GPU threads
5: Run Pivot on available GPU threads
6: Wait for Extend and Pivot

7: Run CheckUniq on available GPU threads
8: end while
9: end function

Note that the Extend and Pivot are two independent procedures (i.e. two different “kernels” in the
CUDA terminology) that can be executed in parallel. In particular, when more than one GPU devices
are available in a system, the two procedures can run on different devices to maximize the scalability.

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 549
4. Computation of witness sets

The concept of “witness sets” (Sommese and Wampler, 1996) is one of the most fundamental and
versatile tools in Numerical Algebraic Geometry. In its most basic form, given a pure dimensional
algebraic set, it can be shown that its intersection with a generic affine space of complementary
dimension consists of finitely many isolated points. This finite set is called a witness set of the algebraic
set. It is a key ingredient in the computation of Numerical Irreducible Decomposition (Sommese and
Wampler, 1996) of an algebraic set. In many scenarios, it produces the degree of each component
as a byproduct. Indeed, this technique (via witness sets) was first used to numerically compute the
degrees of the “Master Space” problem (§6) in the work by Hauenstein et al. (2013).

Given the ubiquity of witness sets in Numerical Algebraic Geometry, in this section, we shall briefly
outline a homotopy construction for computing witness sets for a component of V∗(xA − b) that
utilizes the extra information generated by the degree computation process described above. It is a
special case of the polyhedral homotopy (Huber and Sturmfels, 1995).

Recall that by Proposition 2, the intersection between a component V ⊆ V∗(xA − b) and a generic
affine space of complementary dimension consists of precisely the points t = (t1, . . . , td) ∈ (C∗)d that
satisfy the system of d Laurent polynomial equations in d variables given by

c11t p(1)
0 + c12t p(2)

0 + · · · + c1nt p(n)
0 = c10

...

cd1t p(1)
0 + cd2t p(2)

0 + · · · + cdnt p(n)
0 = cd0

(24)

where the coefficients depend on both the choice of the component in V∗(xA − b) and the choice of
the r-dimensional affine space.

Reusing the notation from §3, let S = {p(1)
0 , . . . , p(n)

0 , 0}, and let ω : S → R be the generic lifting
function used for constructing the regular simplicial subdivision of conv S in §3. Without loss of
generality, we can pick ω to have images only in Q. With these, we introduce a new variable s and
consider

H(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

c11t p(1)
0 sω(p(1)

0) + · · · + c1nt p(n)
0 sω(p(n)

0) − c10sω(p0
0) =∑a∈S c1,atasω(a)

...

cd1t p(1)
0 sω(p(1)

0) + · · · + cdnt p(n)
0 sω(p(n)

0) − cd0sω(0) =∑a∈S cd,atasω(a)

(25)

which is constructed by multiplying each term in (24) by a rational power of the new variable s whose
exponent is determined by the lifting function ω : S → Q. Clearly, H(t, 1) = 0 is exactly the system
(24) which we aim to solve (inside (C∗)d). As s varies, H represents a continuous deformation of
the system (24), or a homotopy. The central idea behind the homotopy continuation method for solving
systems of equations is the deformation of a system into a “starting system” which can be solved
easily. Then numerical continuation methods are employed to trace the movement of the solutions
of the starting system under the deformation toward the solutions of the original system which one
aims to solve.

The key here is to find an appropriate starting system that can be easily solved. As is, H(t, 0)

cannot be used as the starting system since at s = 0, the system is either identically zero or undefined.
Therefore certain transformations are necessary to produce a meaningful and solvable starting system.
Such transformations are given by the regular simplicial subdivision discussed in §3.

Let D be a regular simplicial subdivision obtained by the algorithm presented in §3.5. Recall that
each cell in D is a projection of a cell of the form {â0, . . . , ̂ad} such that conv{â0, . . . , ̂ad} is a lower
d-face of conv Ŝ that is characterized by (22). That is, there exists a (unique) vector of the form
α̂ = (α1, . . . , αd, 1) such that

〈â0, α̂〉 = 〈â j, α̂〉 for j = 1, . . . ,d

〈â , α̂〉 < 〈â, α̂〉 for all a ∈ S.
(26)
0

550 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Using α̂ = (α1, . . . , αd, 1), we shall consider the change of variables

t =

⎧⎪⎪⎨
⎪⎪⎩

t1 = y1sα1

...

td = ydsαd

(27)

with which H becomes

H(t, s) = H(y1sα1 , . . . , ydsαd , s) =

⎧⎪⎨
⎪⎩
∑

a∈S c1,a yas〈a,α〉+ω(a) =∑a∈S c1,a yas〈â,α̂〉
...∑

a∈S cd,a yas〈a,α〉+ω(a) =∑a∈S cd,a yas〈â,α̂〉

Let β = 〈â0, α̂〉 and define a new homotopy

Hα,β(y, s) = s−β H(y1sα1 , . . . , ydsαd , s) =

⎧⎪⎨
⎪⎩

s−β
∑

a∈S c1,a yas〈â,α̂〉
...

s−β
∑

a∈S cd,a yas〈â,α̂〉
(28)

Note that the new homotopy still has the necessary property that Hα,β (y, 1) = 0 is identical to the
system (24) which we aim to solve.

One important observation here is that, by (26), there are precisely d + 1 terms in each component
of Hα,β (y, s) having no power of s (the terms corresponding to a0, . . . , ad), and all other terms have
positive powers of s. Consequently, at s = 0, terms with positive powers of s vanish, leaving only⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1,a0 ya0 + c1,a1 ya1 + · · · + c1,ad yad = 0

c2,a0 ya0 + c2,a1 ya1 + · · · + c2,ad yad = 0
...

cd,a0 ya0 + cd,a1 ya1 + · · · + cd,ad yad = 0

(29)

To simplify the notation, let

C =
⎡
⎢⎣

c1,a0 · · · c1,ad
...

. . .
...

cd,a0 · · · cd,ad

⎤
⎥⎦ � = [a0 · · · ad

]

then the above equation can be written as

C · (y�)� = 0. (30)

For generic choices of the coefficients, there exists a nonsingular matrix G ∈ Md×d(C) such that

GC =

⎛
⎜⎜⎜⎝

c∗
11 c∗

12
c∗

21 c∗
22

. . .
...

c∗
d1 c∗

d2

⎞
⎟⎟⎟⎠ ,

for some c∗
i j ∈ C∗ . Then without altering its solution set, (30) can be transformed into the equivalent

system

GC(t�)� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c∗
11 ya0 + c∗

12 yad = 0
c∗

21 ya1 + c∗
22 yad = 0

...
...

...

c∗ yad−1 + c∗ yad = 0

(31)
d1 d2

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 551
which is also a Laurent binomial system. Therefore, the algorithm outlined can then be used to solve
this system. The solutions are precisely the solutions of the starting system (29) for the homotopy
Hα,β . Then numerical continuation techniques can be applied to trace the solutions toward s = 1 pro-
ducing solutions to the target system (24), which will be points in the witness set of the component
V of V∗(xA − b).

Recall that the construction of the homotopy Hα,β depends on a cell in the regular simplicial
subdivision D of conv S . It is typical for D to contain more than one cell. In this case, each cell
induces a different homotopy of the form of Hα,β . The above construction is a special case of the
polyhedral homotopy (Huber and Sturmfels, 1995), and its theory guarantees that as one goes through
all the cells in D, the resulting homotopies of the form Hα,β will find all the points in the witness
set of V .

5. Related works

The approach developed in this article is a natural continuation of a rich web of works on the
“mixed cell enumeration” problem initiated by the seminal work of Huber and Sturmfels (1995).
The degree computation problem can be considered as a special case of the mixed cell enumeration
problem known as the “unmixed case”. Recent development in the computational aspects of this
problem can be found in works such as Chen et al. (2014b), Gao and Li, (2000, 2003), Lee and Li
(2011), Li and Li (2001), Mizutani and Takeda (2008), Mizutani et al. (2007), Verschelde et al. (1996).
A broad survey of this topic can be found in Li (2003).

In particular, at the core of the proposed algorithm are the two complementary processes: the
“extension” process which gradually extends lower faces one dimension at a time and the “pivoting”
process which jumps directly from one cell to another. In the context of the DAG of “lower k-faces”
(Fig. 3), the “extension” process explores the DAG vertically, and the “pivoting” process moves in the
horizontal direction among the “lower d-faces”.

The “extension” process is the core concept in several different mixed cell enumeration algorithms
including Chen et al. (2014b), Gao and Li (2003), Lee and Li (2011), Li and Li (2001), Mizutani and
Takeda (2008), Mizutani et al. (2007). The contribution of the present work to the development of
the “extension” process is the adaptation to GPU devices. Unlike some of the previous attempts (e.g.
Chen et al., 2014a, 2017) in using GPU devices in mixed cell enumeration algorithms where GPUs
only perform certain specialized tasks (as an accelerator for simple linear algebra procedures), in the
current work, however, the entire successive extension process runs on GPU devices.

Closely related to the present work is the article by Chen and Li (2014) which includes an em-
pirical investigation on the use of existing (CPU-based) mixed cell enumeration algorithms in the
computation of degrees of C∗-solution set of binomial systems. Motivated by the encouraging results
reported, the current work follows the same general approach of degree computation (as of comput-
ing normalized volume) but provides a significant improvement in both the absolute efficiency and
parallel scalability by introducing the “pivoting” process into the algorithm. The original idea of the
“pivoting” process in the context of “mixed cell enumeration” was proposed in Gao and Li (2000).
However, in terms of efficiency, it was quickly eclipsed by algorithms based on the “extension” pro-
cess, and there appears to be no further development of the idea between year 2000 and 2013.5

Moreover, in the present article, the “pivoting” and the “extension” processes are combined as we
believe the complementary duo could offer much better scalability which is crucial in the GPU-based
implementations. This is confirmed by the numerical experiments, to be presented in §6.

The graph-theoretic view of the “cell enumeration” process, adopted in this article, was introduced
in Gao and Li (2000) and, independently, in Mizutani et al. (2007). The parallelization of the algorithm
follows the same general idea attempted in Chen et al. (2014b), but it is modified, in this article, to
adapt to the massively parallel GPU architectures.

5 A recent work of Malajovich (2014), documents an independent development of an approach that appears to make use of
a process similar to that proposed in Gao and Li (2000) and the current work. However, as the work focuses on the complexity
analysis of algorithm, the authors are unable to directly assess the implications on performance or parallel scalability.

552 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
The homotopy (28) for computing witness sets, proposed in §4 is a special case of the polyhedral
homotopy introduced in Huber and Sturmfels (1995) applied to the Laurent polynomial system (13).

6. Case study: master space of N = 1 gauge theories

As a case study, we consider a system arising from theoretical physics, in particular, string the-
ory, which has been studies in related works including Chen and Li (2014), Forcella et al. (2008b),
Mehta et al. (2012). A central area of current research in string theory is the study of the vacuum
moduli space, which, roughly speaking, is the space of continuous solutions (or the affine algebraic
variety) of a multivariate nonlinear function, called the superpotential of the theory under considera-
tion. Different positive-dimensional components of the vacuum moduli space correspond to different
particle branches, such as mesonic, baryonic, etc. Symbolic algebraic geometry methods have been
used to study the complicated structures of the vacuum moduli spaces of various string theory mod-
els (Gray, 2011; Gray et al., 2006, 2009). However, the methods are known to run out of the steam
for even moderate sized systems due to the algorithmic complexity issues. Recently, numerical al-
gebraic geometry methods have been introduced to string theory research and have solved bigger
systems (Greene et al., 2013; Hauenstein et al., 2013; He et al., 2013; Martinez-Pedrera et al., 2013;
Mehta, 2011; Mehta et al., 2012).

In this article, we consider special types of models coming from string theory in which the systems
to be solved are binomial systems, and in which the vacuum moduli spaces are composed of unions of
positive-dimensional components. We take a model which is actively investigated by string theorists
because its vacuum moduli space is a combination of mesonic and baryonic branches (Forcella et al.,
2008a, 2008b). Such moduli spaces are called master spaces.

In particular, we consider the superpotential for N = 1 gauge theories for a D3-brane on the
Abelian orbifold C3/Zm ×Zk . The superpotential for this theory, for fixed m, k ∈ N, is given by

Wm,k =
m−1∑
i=0

k−1∑
j=0

xi, j yi+1, j zi+1, j+1 − yi, jxi, j+1zi+1, j+1 (32)

where the periodic boundary conditions are imposed, e.g., xi,m = xi,0 for any i and xk, j = x0, j for
any j. This is a polynomial in 3mk variables: xi, j , yi, j , zi, j for the combinations of i ∈ Zk and j ∈ Zm .
For example, when m = k = 2, the superpotential is

W2,2 = x0,0 y1,0z1,1 − y0,0x0,1z1,1 + x0,1 y1,1z1,0 − y0,1x0,0z1,0

+ x1,0 y0,0z0,1 − y1,0x1,1z0,1 + x1,1 y0,1z0,0 − y1,1x1,0z0,0,

a polynomial in 12 variables x0,0, x0,1, x1,0, x1,1, y0,0, y0,1, y1,0, y1,1, z0,0, z0,1, z1,0, z1,1. We are
interested in finding the critical points of Wm,k , that is, points at which all the partial derivatives of
the superpotential Wm,k , with respect to variables xi, j , yi, j , zi, j , are zero. These points are precisely
the solutions to the system of polynomial equation

∂Wm,k

∂xi, j
= ∂Wm,k

∂ yi, j
= ∂Wm,k

∂zi, j
= 0 (33)

in the variables xi, j , yi, j , zi, j .
Notice that in Wm,k , each variable appears in exactly two distinct terms. Consequently, the partial

derivative of Wm,k with respect to each variable consists of exactly two terms, hence it forms a
binomial polynomial. For instance,

∂W2,2

∂x0,0
= y1,0z1,1 − y0,1z1,0,

∂W2,2

∂x0,1
= −y0,0z1,1 + y1,1z1,0.

Therefore (33) is indeed a binomial system which shall simply be denoted by ∇Wm,k . We are inter-
ested in computing the dimension and degree of components of the C∗-solution set V∗(∇Wm,k) of
this system.

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 553
Table 1
The dimension of V∗(∇Wm,k) for a range of values for m and k.

m/k 1 2 3 4 5 6 7 8

1 N/A 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18
3 5 8 11 14 17 20 23 26
4 6 10 14 18 22 26 30 34
5 7 12 17 22 27 32 37 42
6 8 14 20 26 32 38 44 50
7 9 16 23 30 37 44 51 58
8 10 18 26 34 42 50 58 66

Table 2
The dimension of V∗(∇Wm,k) for a range of larger values for m = k.

m = k 9 10 11 12 13 14 15 20 25 30 35 40

Dim. 83 102 123 146 171 198 227 402 627 902 1227 1602

Table 3
The degree of the C∗-solution set defined by (32) for a range of m and k values. This table lists only the results that can
be computed within 1 hour on a NVidia GTX 780 graphics card with the double-precision version of the GPU-based parallel
algorithm presented in this work. Shaded entries correspond to and agree with the results already presented in Forcella et al.
(2008b), Mehta et al. (2012). Certain entries are verified via CPU-based parallel algorithms (Chen and Li, 2014), but entries
marked by * are results that cannot be computed with any CPU-based program within a reasonable amount of time (2 days for
multi-core systems and 7 days for clusters). Entries marked by ≥ are lower bounds of the degrees computed by counting the
total number of cells in the simplicial subdivision of the polytope associated with (32).

m/k 1 2 3 4 5 6 7 8
1 2 4 8 16 32 64 128
2 2 14 92 584 3632 22304 135872 823424
3 4 92 1620 26762 437038 7029180 111135118* ≥ 100100328
4 8 584 26762 1169876 50467100 ≥ 11907022 ≥ 37567994
5 16 3632 437038 50467100 ≥ 99710106 ≥ 62944504
6 32 22304 7029180 ≥ 11907022 ≥ 62944504
7 64 135872 111135118* ≥ 37567994
8 128 823424 ≥ 100100328

The dimensions and the degrees of the top dimensional components of this system were first
computed in Forcella et al. (2008b) for up to m = 3 and k = 5 using the Gröbner basis method. Later
on, in Mehta et al. (2012), the dimensions and degrees of all the components for up to m = 3 = k
were carried out using numerical algebraic geometry methods. Table 1 and 2 show the dimension of
V∗(∇Wm,k) ⊂ (C∗)3mk for a range of values for m and k which are computed via Smith Normal Form
decomposition (5). More importantly, our implementation shows impressive efficiency in computing
the degree of V∗(∇Wm,k) for larger values of m and k, including a component of degree as high as
50467100, for m = 4 and k = 5. Table 3 shows the degree of V∗(∇Wm,k) for a range of m and k
values that can be computed within one hour6 which is a significant expansion of the existing results
presented in Forcella et al. (2008b), Mehta et al. (2012) (although the methods used in these two
works yield more information than the proposed approach). In terms of efficiency and scalability, the

6 The time limit is chosen based on two limitations of the experiment setup. Firstly, the GPU-devices used in the experi-
ments (NVidia GTX 780) lacks ECC (error correcting code) support for its memory (known as DRAM) and is therefore prone
to undetectable and catastrophic random error in stored data. The comprehensive study (Schroeder et al., 2011) conducted in
real world scenarios concludes that “DRAM error rates that are orders of magnitude higher than previously reported, with 25,000 to
70,000 errors per billion device hours per Mbit...”. While in the experiments we were not able to directly observe such errors, the
surprisingly high estimate suggests that it can be risky to run long experiments on GPU-devices that have no ECC support.
Moreover, for larger problems in this family that require longer running time, floating arithmetic in higher precision is likely
needed which only has very limited support at this point.

554 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Table 4
Speedup ratios achieved by the GPU-based double-precision (DP) and single-precision (SP)
algorithms respectively on NVidia GTX 780 when compared to MixedVol-2.0 running on an
Intel Xeon 2.4 GHz CPU. “0.00” represents speedup ratios too small to be measured reliably.
The number of threads are chosen to be multiples of 32 which is the “warp size” (smallest
group of threads in CUDA framework). Block size (number of threads working as a team)
ranging from 64 to 1024 is used depending on the total number of threads. The GPU
schedules thread execution based on a number of factors, therefore we cannot guarantee
the simultaneous execution of all the threads.

GPU threads DP speedup ratio SP speedup ratio

64 0.00 0.00
128 0.00 0.00
256 0.00 0.00
512 0.91 0.73
1024 0.98 4.14
2048 1.15 6.66
4096 2.20 10.99
8192 4.01 18.71
214 7.99 35.00
215 15.00 40.10
216 16.33 45.33
217 29.47 44.99
218 28.33 41.06

Table 5
Speedup ratios achieved by using multiple identical NVidia GTX 780 de-
vices with the single device performance (using the same algorithm) as a
reference.

N.o. devices 1 2 3
Speedup over single device 100% 188% 213%
Max. speedup over CPU 28.33 54.12 61.00
Max. speedup over a cluster of 100 nodes 0.48 0.91 1.04

proposed algorithm is also a substantial improvement over existing algorithms investigated in Chen
and Li (2014).

Table 4 shows the speedup ratio achieved by the GPU-based algorithm, presented in §3, over its
closest serial CPU-based implementation MixedVol-2.0 (Lee and Li, 2011) which is widely regarded
as one of fastest serial software program for computing “mixed volume” (see §5 and Appendix A
for its connection with degree computation considered in this article). Remarkably, with sufficient
GPU threads nearly 30 fold speedup ratio has been achieved by the double-precision version of the
algorithm. When the single-precision version is used, even higher speedup ratio can be achieved. Un-
fortunately, it appears that single-precision is, in general, not reliable in handling very large problems
due to its insufficient precision.

More important to note is the great potential of the GPU-based algorithm when multiple GPU de-
vices are used. Table 5 shows the speedup ratio achieved by multiple GPU devices when compared
to a single GPU, a single CPU, and a small cluster of 100 nodes. With three GPU devices, over 60 fold
speedup over the single-threaded CPU-based algorithm (MixedVol-2.0) has been achieved. The most
surprising result is the comparison between the GPU-based algorithm, developed in this article, run-
ning on three GPU devices and a similar CPU-based algorithm running on a small cluster. MixedVol-3
is a parallel version of MixedVol-2.0 (Lee and Li, 2011) and, now, a part of a larger software pro-
gram Hom4PS-3 (Chen et al., 2014a). With three NVidia GTX 780 our GPU-based algorithm computes
the degree for V∗(∇W4,5) faster than MixedVol-3 on a small cluster totaling 100 Intel Xeon 2.4 GHz
processor cores.

In computing the degrees of V∗(∇Wm,k) for certain larger m and k, while the GPU based algorithm
was unable to compute the degree exactly due to insufficient numerical accuracy: In some cases the
algorithm successfully obtained simplicial subdivisions of the polytopes associated with V∗(∇Wm,k),
but the volumes of cells, which are given as matrix determinants (17), could not be computed with

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 555
sufficient accuracy to ensure the exactness. In some other cases, the random lifting function fails to
be sufficiently “generic”. Consequently, the induced subdivision contains cells that are not simplices.
In either cases, however, since the volume of each cell is at least one, the total number of cells is
therefore a lower bound of the degree which equals the total volume of all the cells. Although these
lower bounds are likely to be much smaller than the actual degrees, given the sheer size of these
systems, these partial results still merit further investigations and improvements on the approach
presented here. The lower bounds are therefore also included in Table 3 (entries marked with “≥”).

While the rigorous analysis and physical interpretation of the data presented here are outside the
scope of this article, the rich set of data shown in Tables 1, 2, and 3 appear to show some general
pattern. To motivate further research in this important problem, we summarize these patterns in the
form of a conjecture:

Conjecture 8. In general, for m, k ∈ Z+ with m �= k, the solution set V∗(∇Wm,k) consists of a single compo-
nent of dimension

dimV∗(∇Wm,k) = mk + 2.

Furthermore, for m = 1 and m = 2, the degree of the solution set is given by

degV∗(∇W1,k) = 2 · degV∗(∇W1,k−1) = 2k−1

degV∗(∇W2,k) = 6 · degV∗(∇W2,k−1) + 22k−3 = 2 · 6k−1 +
k−2∑
j=0

22(k− j)−3 · 6 j

7. Concluding remarks

In this article we proposed a parallel algorithm for computing the degree of components of a
C∗-solution set defined by a (Laurent) binomial system that is specifically designed for GPU devices.
Rooted in the rich web of works on the mixed cell enumeration problem, the current contribution
brings significant improvements over the existing methods in several different directions:

• Utilizing the special structure of binomial systems, this algorithm employs the “pivoting” process
which was not used in the most efficient existing methods (Chen et al., 2014b; Gao and Li, 2003;
Lee and Li, 2011; Lee et al., 2008; Li and Li, 2001; Mizutani and Takeda, 2008; Mizutani et al.,
2007) (which depend on, exclusively, the “extension” process).

• With the goal of maximizing scalability, the two complementary processes “extension” and “piv-
oting” are combined via the use of a GPU managed hash table with minimum costs.

• In contrast to previous attempts, all computational intensive tasks are performed by GPUs in the
proposed algorithm.

• Based on a formulation of the degree as the volume of a lattice polytope, the algorithm computes
the degree without computing witness sets. In situations where witness sets are needed (for other
operations in Numerical Algebraic Geometry), they can be computed by homotopies constructed
as byproducts of the degree computation process. The benefit of this indirect approach is that the
number of homotopy paths required is exactly the number of witness points.

Numerical experiments with the CUDA based implementation show remarkable performance and
scalability in our case study of the N = 1 gauge theories.

Acknowledgements

DM was supported by a DARPA Young Faculty Award and an Australian Research Council DE-
CRA fellowship No. DE140100867. An internal preprint number for this article is ADP-15-2/T904. TC
was supported in part by NSF under Grant DMS 11-15587. TC and DM would like to thank Daniel
Brake, Yang-Hui He and Thomas Kahle for their feedback on this paper. TC would also like to thank

556 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Dirk Colbry for the helpful discussions and the Institute for Cyber-Enabled Research at Michigan State
University for providing the necessary hardware and computational infrastructure.

Appendix A. Kushnirenko/Bernshtein’s theorem

Theorem 9 (Kushnirenko, 1975; Bernshtein, 1975). Consider the system of k Laurent polynomial equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1,1xa(1) + c1,2xa(2) + · · · + c1,kxa() = 0

c2,1xa(1) + c2,2xa(2) + · · · + c2,kxa() = 0
...

ck,1xa(1) + ck,2xa(2) + · · · + ck,kxa() = 0

in k variables x = (x1, . . . , xk) in which every equation has the same set of monomials determined by exponent
vectors a(1), . . . , a() ∈ Zk. For coefficients ci, j ∈ C∗ in a Zariski open and dense subset among all possible
(complex) coefficients, the solutions of this system in (C∗)k are all isolated and nonsingular. The total number
of these isolated solutions is

k! · Volk(conv{a(1), . . . ,a()}).
In Bernshtein (1975), this theorem takes a significantly more general form where the number of

isolated nonzero C∗-solutions of a system of a Laurent polynomial system is shown to be equal to
the mixed volume of the Newton polytopes of the system. This number is known as the BKK bound of a
Laurent polynomial system. Therefore, the degree computation discussed above can be considered as
a special case of the BKK bound i.e. mixed volume computation.

Appendix B. Transformation matrices used in Smith Normal Form

In the Smith Normal Form decomposition A = P−1
[

D 0
0 0

]
Q −1 the transformation matrices P and

Q are not unique. Suppose there is a different pair of unimodular matrices P̃ =
[

P̃r

P̃0

]
∈ Mn×n(Z)

where P̃0 ∈ M(n−r)×n(Z) and Q̃ ∈ Mm×m(Z) such that[
P̃r

P̃0

]
A
[

Q̃ r Q̃ 0
]=

[
D 0
0 0

]
.

Then we must have

P̃0 A = P̃0 P−1
[

D 0
0 0

]
Q −1 = [0 0

]
.

Recall that both P and Q are nonsingular, therefore

P̃0 P−1 = [0 G
]

for some matrix G ∈ M(n−r)×(n−r)(Z), and hence

P̃0 = [0 G
]

P = [0 G
][Pr

P0

]
= G P0.

Moreover, since P0 and P̃0 consists of the n − r rows of the unimodular matrices P and P̃ respectively
and hence must be of full rank, the matrix G must be nonsingular. Also note that

±1 = det P̃ P−1 = det

[
P̃r P−1

P̃0 P−1

]
=
[

P̃r P−1

0 G

]

therefore G must be unimodular. In other words, columns of P̃0 must be the images of columns of
P0 under the linear transformation given by the unimodular matrix G .

T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558 557
Appendix C. Parallel Smith Normal Form computation

As summarized in Proposition 1 and Proposition 3, the computation of Smith Normal Form of the
exponent matrix A in the binomial system xA − b is a crucial preprocessing step for the algorithm
proposed in this article.

One of the classic algorithms for computing the Smith Normal Form uses successive row and
column reductions (see e.g., Cohen, 1993, Algorithm 2.4.14): Consider the special case where A =

[
a1
a2

]
with a1, a2 nonzero, that is, take n = 2 and m = 1. By Bézout’s identity, there exist s and t such that
d := gcd(a1, a2) = s a1 + t a2. Let

P =
[

s t
− a2

d
a1
d

]
,

then det P = sa1+ta2
d = d

d = 1 and

P A =
[

s t
− a2

d
a1
d

][
a1
a2

]
=
[

sa1 + ta2
− a2a1

d + a2a2
d

]
=
[

d
0

]

Similarly, for the special case A = [a1 a2], let Q =
[

s
−a2

d

t
a1
d

]
, then A Q = [

d 0
]
. In general, n × n

and m × m version of the above matrices P and Q can be constructed to perform row and column
reduction respectively for a n × m integer matrix.

It can be shown that using repeated row and column reduction together with potential row
and column permutations one can construct unimodular matrices P (1), . . . , P (k) ∈ Mn×n(Z) and
Q (1), . . . , Q () ∈ Mm×m(Z) such that

P (k) · · · P (1) A Q (1) · · · Q () =

⎛
⎜⎜⎜⎜⎜⎝

d1

. . .
dr

0

. . .
0

⎞
⎟⎟⎟⎟⎟⎠

with r = rank A and d1, . . . , dr nonzero.

References

Bárány, I., Füredi, Z., 1987. Computing the volume is difficult. Discrete Comput. Geom. 2 (1), 319–326.
Bernshtein, D.N., 1975. The number of roots of a system of equations. Funct. Anal. Appl. 9 (3), 183–185.
Büeler, B., Enge, A., Fukuda, K., 2000. Exact volume computation for polytopes: a practical study. In: Kalai, G., Ziegler, G.M. (Eds.),

Polytopes — Combinatorics and Computation. In: DMV Seminar, vol. 29. Birkhäuser, Basel, pp. 131–154.
Chen, T., Lee, T.-L., Li, T.-Y., 2014a. Hom4ps-3: a parallel numerical solver for systems of polynomial equations based on polyhe-

dral homotopy continuation methods. In: Hong, H., Yap, C. (Eds.), Mathematical Software – ICMS 2014. In: Lecture Notes in
Computer Science, vol. 8592. Springer, Berlin, Heidelberg, pp. 183–190.

Chen, T., Lee, T.-L., Li, T.-Y., 2014b. Mixed volume computation in parallel. Taiwan. J. Math. 18 (1), 93–114.
Chen, T., Lee, T.-L., Li, T.-Y., 2017. Mixed cell computation in Hom4PS-3. In: Numerical Algebraic Geometry – Special Issue.

J. Symb. Comput. 79, 516–534.
Chen, T., Li, T.-Y., 2014. Solutions to systems of binomial equations. Ann. Math. Sil. 28, 7–34.
Cohen, H., 1993. A Course in Computational Algebraic Number Theory, vol. 138. Springer.
Cox, D.A., Little, J.B., Schenck, H.K., 2011. Toric Varieties. American Mathematical Soc.
Eisenbud, D., Sturmfels, B., 1996. Binomial ideals. Duke Math. J. 84 (1), 1–46.
Forcella, D., Hanany, A., He, Y.-H., Zaffaroni, A., 2008a. Mastering the master space. Lett. Math. Phys. 85, 163–171.
Forcella, D., Hanany, A., He, Y.-H., Zaffaroni, A., 2008b. The master space of N = 1 gauge theories. J. High Energy Phys. 0808,

012.
Fulton, W., 1993. Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press.
Fulton, W., 1998. Intersection Theory. Springer, New York.
Gao, T., Li, T.-Y., 2000. Mixed volume computation via linear programming. Taiwan. J. Math. 4 (4), 599–619.
Gao, T., Li, T.-Y., 2003. Mixed volume computation for semi-mixed systems. Discrete Comput. Geom. 29 (2), 257–277.

http://refhub.elsevier.com/S0747-7171(16)30055-4/bib626172616E795F636F6D707574696E675F31393837s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6265726E73687465696E5F6E756D6265725F31393735s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6275656C65725F65786163745F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6275656C65725F65786163745F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F686F6D3470732D333A5F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F686F6D3470732D333A5F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F686F6D3470732D333A5F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F6D697865645F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F686F6D347073333A6E6167s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F686F6D347073333A6E6167s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6368656E5F736F6C7574696F6E735F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib636F68656E5F636F757273655F31393933s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib636F785F746F7269635F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib656973656E6275645F62696E6F6D69616C5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib466F7263656C6C613A323030386568s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib466F7263656C6C613A323030386262s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib466F7263656C6C613A323030386262s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib66756C746F6E5F696E74726F64756374696F6E5F31393933s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib66756C746F6E5F696E74657273656374696F6E5F31393938s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib67616F5F6D697865645F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib67616F5F6D697865645F32303033s1

558 T. Chen, D. Mehta / Journal of Symbolic Computation 79 (2017) 535–558
Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., 1994. Discriminants, Resultants, and Multidimensional Determinants. Mathemat-
ics: Theory & Applications. Birkhäuser, Boston.

Gray, J., 2011. A simple introduction to Grobner basis methods in string phenomenology. Adv. High Energy Phys. 2011, 217035.
Gray, J., He, Y.-H., Ilderton, A., Lukas, A., 2009. STRINGVACUA: a Mathematica package for studying vacuum configurations in

string phenomenology. Comput. Phys. Commun. 180, 107–119.
Gray, J., He, Y.-H., Lukas, A., 2006. Algorithmic algebraic geometry and flux vacua. J. High Energy Phys. 0609, 031.
Greene, B., Kagan, D., Masoumi, A., Mehta, D., Weinberg, E.J., Xiao, X., 2013. Tumbling through a landscape: evidence of insta-

bilities in high-dimensional moduli spaces. Phys. Rev. D 88 (2), 026005.
Hartshorne, R., 1977. Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer.
Hauenstein, J., He, Y.-H., Mehta, D., 2013. Numerical elimination and moduli space of vacua. J. High Energy Phys. 1309, 083.
He, Y.-H., Mehta, D., Niemerg, M., Rummel, M., Valeanu, A., 2013. Exploring the potential energy landscape over a large

parameter-space. J. High Energy Phys. 1307, 050.
Herlihy, M., Shavit, N., 2012. The Art of Multiprocessor Programming. Elsevier.
Huber, B., Sturmfels, B., 1995. A polyhedral method for solving sparse polynomial systems. Math. Comput. 64 (212), 1541–1555.
Kahle, T., 2010. Decompositions of binomial ideals. Ann. Inst. Stat. Math. 62 (4), 727–745.
Kahle, T., Miller, E., 2014. Decompositions of commutative monoid congruences and binomial ideals. Algebra Number Theory 8

(6), 1297–1364.
Kushnirenko, A.G., 1975. A Newton polyhedron and the number of solutions of a system of k equations in k unknowns. Usp.

Math. Nauk 30, 266–267.
Lee, T.-L., Li, T.-Y., 2011. Mixed volume computation in solving polynomial systems. Contemp. Math. 556, 97–112.
Lee, T.-L., Li, T.-Y., Tsai, C.-H., 2008. HOM4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy

continuation method. Computing 83 (2), 109–133.
Li, T.-Y., 2003. Numerical solution of polynomial systems by homotopy continuation methods. In: Ciarlet, P.G. (Ed.), Handbook of

Numerical Analysis, vol. 11. North-Holland, pp. 209–304.
Li, T.-Y., Li, X., 2001. Finding mixed cells in the mixed volume computation. Found. Comput. Math. 1 (2), 161–181.
Loera, J.D., Rambau, J., Santos, F., 2010. Triangulations: Structures for Algorithms and Applications. Springer Science & Business

Media.
Malajovich, G., 2014. Computing mixed volume and all mixed cells in quermassintegral time. arXiv:1412.0480 [math].
Martinez-Pedrera, D., Mehta, D., Rummel, M., Westphal, A., 2013. Finding all flux vacua in an explicit example. J. High Energy

Phys. 1306, 110.
Mehta, D., 2011. Numerical polynomial homotopy continuation method and string vacua. Adv. High Energy Phys. 2011, 263937.
Mehta, D., He, Y.-H., Hauenstein, J.D., 2012. Numerical algebraic geometry: a new perspective on string and gauge theories.

J. High Energy Phys. 1207, 018.
Miller, E., Sturmfels, B., 2005. Combinatorial Commutative Algebra, vol. 227. Springer.
Mizutani, T., Takeda, A., 2008. DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all

mixed cells. In: Stillman, M., Verschelde, J., Takayama, N. (Eds.), Software for Algebraic Geometry. In: The IMA Volumes in
Mathematics and Its Applications, vol. 148. Springer, pp. 59–79.

Mizutani, T., Takeda, A., Kojima, M., 2007. Dynamic enumeration of all mixed cells. Discrete Comput. Geom. 37 (3), 351–367.
NVIDIA Corporation, 2011. NVIDIA CUDA C programming guide. Technical report.
Schroeder, B., Pinheiro, E., Weber, W.-D., 2011. DRAM errors in the wild: a large-scale field study. Commun. ACM 54 (2), 100–107.
Skiena, S.S., 2009. The Algorithm Design Manual. Springer Science & Business Media.
Smith, H.J.S., 1861. On systems of linear indeterminate equations and congruences. Philos. Trans. R. Soc. Lond. 151, 293–326.
Sommese, A.J., Wampler, C.W., 1996. Numerical algebraic geometry. In: The Mathematics of Numerical Analysis. In: Lectures in

Applied Mathematics, vol. 32. AMS, pp. 749–763.
Sommese, A.J., Wampler, C.W., 2005. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.

World Scientific Pub. Co., Inc.
Sturmfels, B., 1997. Equations defining toric varieties. In: Proc. Symp. Pure Math. American Mathematical Society.
Verschelde, J., Gatermann, K., Cools, R., 1996. Mixed-volume computation by dynamic lifting applied to polynomial system

solving. Discrete Comput. Geom. 16 (1), 69–112.

http://refhub.elsevier.com/S0747-7171(16)30055-4/bib67656C66616E645F6469736372696D696E616E74735F31393934s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib67656C66616E645F6469736372696D696E616E74735F31393934s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477261793A323030396679s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477261793A323030387A73s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477261793A323030387A73s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477261793A32303036676Es1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477265656E653A32303133696461s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib477265656E653A32303133696461s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6861727473686F726E655F616C676562726169635F31393737s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib486175656E737465696E3A323031327873s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib48653A32303133796Bs1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib48653A32303133796Bs1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6865726C6968795F6172745F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib68756265725F706F6C7968656472616C5F31393935s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6B61686C655F6465636F6D706F736974696F6E735F32303130s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6B61686C655F6465636F6D706F736974696F6E735F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6B61686C655F6465636F6D706F736974696F6E735F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6B7573686E6972656E6B6F5F6E6577746F6E5F31393735s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6B7573686E6972656E6B6F5F6E6577746F6E5F31393735s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C65655F6D697865645F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C65655F686F6D3470732D322E303A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C65655F686F6D3470732D322E303A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C695F6E756D65726963616C5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C695F6E756D65726963616C5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C695F66696E64696E675F32303031s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C6F6572615F747269616E67756C6174696F6E733A5F32303130s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6C6F6572615F747269616E67756C6174696F6E733A5F32303130s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D616C616A6F766963685F636F6D707574696E675F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib4D617274696E657A506564726572613A323031327273s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib4D617274696E657A506564726572613A323031327273s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib4D656874613A32303131776As1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib4D656874613A32303132776Bs1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib4D656874613A32303132776Bs1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D696C6C65725F636F6D62696E61746F7269616C5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6D697A7574616E695F64796E616D69635F32303037s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib6E76696469615F636F72706F726174696F6E5F6E76696469615F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736368726F656465725F6472616D5F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736B69656E615F616C676F726974686D5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736D6974685F73797374656D735F31383631s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736F6D6D6573655F6E756D65726963616C5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736F6D6D6573655F6E756D65726963616C5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736F6D6D6573655F6E756D65726963616C5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib736F6D6D6573655F6E756D65726963616C5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib737475726D66656C735F6571756174696F6E735F31393937s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib766572736368656C64655F6D697865642D766F6C756D655F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30055-4/bib766572736368656C64655F6D697865642D766F6C756D655F31393936s1

	Parallel degree computation for binomial systems
	1 Introduction
	2 Laurent binomial systems and their solution sets
	3 Parallel degree computation
	3.1 Regular simplicial subdivision
	3.2 Extension of k-faces
	3.3 Simplicial pivoting
	3.4 Traverse the feasible subgraph
	3.5 Summary of the algorithm

	4 Computation of witness sets
	5 Related works
	6 Case study: master space of N=1 gauge theories
	7 Concluding remarks
	Acknowledgements
	Appendix A Kushnirenko/Bernshtein's theorem
	Appendix B Transformation matrices used in Smith Normal Form
	Appendix C Parallel Smith Normal Form computation
	References

