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One of the most challenging and frequently arising problems in many areas of science is to find solu-
tions of a system of multivariate nonlinear equations. There are several numerical methods that can
find many (or all if the system is small enough) solutions but they all exhibit characteristic problems.
Moreover, traditional methods can break down if the system contains singular solutions. Here, we
propose an efficient implementation of Newton homotopies, which can sample a large number of the
stationary points of complicated many-body potentials. We demonstrate how the procedure works
by applying it to the nearest-neighbor ¢* model and atomic clusters. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4896657]

INTRODUCTION

Solving nonlinear equations is one of the most frequently
arising problems in physics, chemistry, mathematical biol-
ogy, and many areas of engineering. In particular, finding
stationary points (SPs) of a potential energy function V(x)
provides the foundations for global optimization,'~* thermo-
dynamic sampling to overcome broken ergodicity,*’ as well
as rare event dynamics,® ' within the general framework
of potential energy landscape (PEL) theory.'® Here, the SPs
of a real-valued function V(x) from R” to R are defined
as the simultaneous solutions of the system of equations
f(x) =0V(x)/ox; =0, forall i =1,..., n. The SPs can be
employed to analyze many different properties of a diverse
range of physical, chemical, and biological systems, such as
metallic clusters, biomolecules, structural glass formers, and
coarse-grained models of soft and condensed matter.'® !

Since nonlinear equations are generally difficult to solve,
it is usually not possible to find all the SPs analytically and
one must resort to numerical methods. For example, in the
Newton-Raphson (NR) approach one refines an initial guess
via successive iterations in the hope of converging to a so-
lution. Unfortunately, unless the initial guess is sufficiently
close to a solution, the NR method may converge slowly or
diverge. Furthermore the NR method is also notorious for its
erratic behavior near singular solutions, e.g., see Ref. 18.

An alternative method to find SPs is the gradient-square
minimization method which solves f;(x) = 0 by minimizing
the sum of squares W = Z,N: | f:(x)? using traditional numer-
ical methods, such as conjugate gradient.'>?° While the min-
ima with W = 0 are the desired SPs, however, the number of
minima with W > 0, which are not the solutions of f;(x), gen-
erally outweighs the actual SPs, and these non-solutions also
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have an additional zero Hessian eigenvalue, making the min-
imization problem ill-conditioned,?'-?> and the approach very
inefficient in practice.?’>3

A systematic approach was proposed in Refs. 21 and
23 based on eigenvector-following, as implemented in the
OPTIM package. This program includes many other geom-
etry optimization techniques, such as a modified version
of the limited-memory Broyden—Fletcher—Goldfarb—Shanno
(LBFGS) algorithm,?*?* single- and double-ended?® transi-
tion state searches via a variety of gradient-only and second
derivative-based eigenvector-following techniques,”’-?® and
hybrid eigenvector-following methods.?3%3° The recently
described biased gradient squared descent framework® may
provide a useful alternative, which merits investigation in fu-
ture work.

Recently, a completely different approach based on al-
gebraic geometry, namely the numerical polynomial homo-
topy continuation (NPHC) method, has been used to find
all the solutions of various models with polynomial-like
nonlinearity.?"-3342:5¢ After computing an upper bound on the
number of isolated complex solutions of the given set of equa-
tions, the system is continuously deformed into a different one
whose solution count agrees with the upper bound. Then, each
solution of the new set is tracked towards the original system
via a single parameter. This method can identify all isolated
complex solutions (which include real solutions) of the origi-
nal system (see, e.g., Refs. 32—-34 for more details). When the
number of complex solutions is very large compared to the
number of real solutions, computing all of the real solutions
using the NPHC method can be a computationally expensive
task.

Another approach to find all the solutions of a system of
nonlinear equations is an interval based method,* but it has
only proved successful for very small systems and SPs so far,
since it is based on bisections of the ranges.

In this contribution, we use an efficient, robust, and
highly parallel implementation of Newton homotopies (NH),

© 2014 AIP Publishing LLC
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a previously underutilized approach for finding SPs. Unlike
the NPHC and the minimization based methods, the NH ap-
proach has the benefit of directly targeting the real SPs. When
compared to the NR method, our approach for NH is more ef-
fective at finding singular solutions and also capable of find-
ing multiple solutions starting from a single point. Numerical
experiments with nearest-neighbor 2D ¢* models and atomic
clusters suggest that NH is an efficient and effective method
capable of finding a large number of SPs, especially those SPs
of higher indices, within a reasonable amount of time, and has
great potential for use in a wide range of other applications.

NEWTON HOMOTOPY

The fundamental goal is to find solutions
X=(x,...,x,) € R" to a target system consisting of n
equations F(x,,...,x,) =F(x) =0. The general idea of
homotopy continuation is to deform the target system into
a different one, the starting system, for which solutions are
easier to compute. In this article, we focus on deforming
using a Newton Homotopy developed in Refs. 44-46 which
is given by H : R"*! — R” with

H(x, t) := F(x) — tF(a) (1)

for some chosen a € R”. It represents a continuous deforma-
tion between the target system H(x, 0) = F(x) and the start-
ing system H(x, 1) = F(x) — F(a). The system of equations
H(x, ) = 0 form a family of equations parameterized by ¢
containing the target system F(x) = 0, which we aim to solve.

The n equations H(x,#) =0 in n + 1 unknowns
define the real solution set V(H):= {(x,?) e R"!:
H(x, t) = 0} containing the target solution set of F(x) = 0 as
a cross-section at ¢ = 0. Certifiable methods for numerically
tracking along curves in V(H) are provided in Refs. 47
and 48.

If the Jacobian matrix Jg of H at (a, 1) has rank n, then
there is a curve in V(H) passing through (a, 1) that is smooth
locally so that one may track along it. To simplify the situa-
tion, assume that H (1) satisfies the smoothness assumption,
namely Jy (X, £) has rank n for all (x, ) € V(H). Thus, V(H) is
the union of disjoint smooth curves in R"*! with one passing
through (a, 1). By tracking along this curve, one may locate
points in {(x, t) € V(H) : t = 0} corresponding to the real so-
lutions of F(x) = 0. Figure 1 depicts this situation.

This setup suggests a practical numerical method for lo-
cating solutions of the system F(x) = 0: starting at (a, 1),
trace the curve defined by H(x, ) = 0 in R™*! via efficient
and reliable numerical methods. A solution to the target sys-
tem F = 0 is produced each time the curve passes through
the hyperplane at + = 0. Since we will not test if the smooth-

t=0 t=1

FIG. 1. A smooth curve defined by H(x, 1) = 0.
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ness assumption holds, we will simply trace along the curve
until singularities arise. Remark 1 discusses some options for
tracking through singularities.

TRACING SMOOTH CURVES

By the smoothness assumption, the zero set V(H) of H
consists of smooth curves. Let y be the unique curve con-
taining (a, 1). The numerical NH method revolves around the
procedure of “tracing” the curve y from (a, 1). We briefly
outline a basic method and refer to standard references, e.g.,
Refs. 32 and 49-51, for variations.

For convenience, let y = (x, ¢) and write H(x, ) = H(y).
The smooth curve y is naturally parametrized by arc length.
That is, there exists a smooth function y : Rt — y such that
y(0) = (a, 1), H(y(s)) = 0, and |ly(s)]l, = 1 for all s € R*
where y(s) is the tangent (velocity) vector of the parametrized
curve y at s and ||y(s)ll, is the length of this vector. It rep-
resents a trajectory that passes through (a, 1), satisfies the
equation H = 0, and has unit velocity at all time. Clearly,
parametrizations satisfying these conditions are not unique:
there are at least two going in opposite directions. There-
fore, to trace along a curve without backtracking, one must
be able to determine and maintain a consistent orientation. It
can be shown that under the smoothness condition, the

(n+ 1) x (n + 1) square matrix [JH;(YS()S))] is never singular,

that is, its determinant never vanishes and hence maintains a
consistent sign. Consequently this sign determines the orien-
tation of the parametrization. Once an orientation o, = £1 is
chosen, one must keep the orientation consistent while tracing
the curve to prevent backtracking. With the orientation con-
straint, the arc-length parametrization for y is characterized
by

Ju(y($)y(s) =0,

|:JH(Y(S)):|
sgn det = 0y,

y(s), (@3]

Iyl =1,
y(0) = (a, D).

Locally, at any fixed s € R and its corresponding y(s),
the tangent vector y(s) can be computed efficiently via nu-
merical methods. In particular, the possible choices for y(s)
can be computed via the QR-decomposition of the transpose
matrix JH(y(s))T. Furthermore, utilizing the information pro-
duced during the QR-decomposition, the correct choice of
y(s) can be made, as a by-product, with at most O(n) extra
floating point operations.

Globally, in principle, any ordinary differential equation
solver capable of integrating the above system can be used to
trace the curve and potentially obtain solutions to the target
system point at = 1. Numerical methods based on this idea
are generally referred to as “global Newton methods.”*> Our
implementation employs a “prediction-correction scheme”
due to numerical stability concerns.*

Remark 1. The numerical method described above is ac-
tually capable of handling cases where the curve y contains
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Successful init. points

Yo

FIG. 2. Scatter plot of some starting points (x,, y,,) for which the NH (1) was
successful in obtaining the singular solution (0, 0) of the system (3) within
machine precision.

isolated singularities, such as points at which two curves
intersect transversally. More advanced techniques for han-
dling singularities can be found in Refs. 50, 52-55, and 61.

AN EXAMPLE SYSTEM

Consider the system

{%ﬁ —2xy =0,

3
y — x2 =0,

from Ref. 18. This system has only one solution in R2,
namely (0, 0), which has multiplicity 3. It is shown in
Ref. 18 that starting from almost every point in R? \ {(0, 0)},
the NR method will diverge. In other words, the NR method
will almost surely never find the solution of this system.
Figure 2 shows that the NH method (1) was successful at lo-
cating the solution for many starting points (x,, ¥).

THE NEAREST-NEIGHBOR TWO-DIMENSIONAL
¢* MODEL

We consider a model from theoretical physics called
the two-dimensional nearest-neighbor ¢* model. It has been
widely studied because it is one of the simplest models with
a continuous configuration space that exhibits a phase tran-
sition in the same universality class as the two-dimensional
Ising model. For an N € Z* and J, A, u € R the model, in
N? variables X = (x,;, X5, - - -, Xyy)» iS V(X) given by

V(x) = Agow o 2
x) = Z 4—!x,-j—7x,»j+z Z (xij—xkl) ,

(i, j)eA (kDEN,,

“4)
where A C Z? is the standard square lattice with N? lattice
sites and NV, ;) C A denotes the four nearest-neighbor sites

of (i, j). The N? stationary equations are given by

V(x) A 3 2
=t @ = Y Jxy =0 ()
ij (k,DeN,

@)

J. Chem. Phys. 141, 121104 (2014)

TABLE 1. The number of real solutions of (5) found using NH with one
starting point. The percentages are computed with respect to all SPs.38:36

N J No. of SPs % of total SPs found Time
3 0.90 3 (All) 100% 0.008 s
0.70 3 (All) 100% 0.012s
0.50 171 (All) 100% 0.999 s
0.30 1121 99.1% 2.001 s
4 0.90 83 (All) 100% 0.903 s
0.60 199 68.4% 1.371s
0.30 40 225 40.6% 59.27 s
5 0.90 102 2.009 s
0.60 679 49.50s
6 0.90 208 2395 s
0.60 959 52.37 s
7 0.90 358 29.66 s
0.60 3266 37.25s
8 0.90 674 4312 s
0.60 1538 55.99 s
for each pair of i, j = 1, ..., N. Given the physical context,

only real solutions are needed. We use periodic boundary con-
ditions, A = 3/5 and pu? = 2.

A variety of computational tools have been used to study
this model. In particular, the NPHC method has found all the
SPs for N = 3, 4 in a previous study.**>® However, this family
of problems poses a particularly tough challenge to methods
that find all complex solutions, since the total number of solu-
tions in CV, counting multiplicity, is always equal to its total
degree (the Bezout bound) 3V *, which grows quickly as N in-
creases. Direct computation of all complex solutions becomes
unfeasible as N increases. However, by varying the parameter
J from 0 to 1, we pass from the case when all the solutions are
real to where only an extremely small fraction is real. For the
latter limit the NH approach, which directly targets the real
solutions, has a clear advantage over methods that compute
all complex solutions.

In our numerical experiments, Newton homotopies (1)
were applied to (5) with varying values for N and J. From
a single randomly chosen starting point multiple real solu-
tions were obtained. Table I summarizes the ability and effi-
ciency of NH in finding the real solutions for a range of N
and J values. Indeed, all real solutions were found in many
cases. For example, with N = 3, in the case of J = 0.9,
0.8,0.7,0.6,0.5, and 0.4, our NH implementation was able
to obtain all of them with a single randomly chosen start-
ing point. The Central Processing Unit time information in
the table corresponds to a workstation with a 3.4 GHz Intel
Core i5-3570K processor. The results highlight the strength
of the NH: it is capable of finding a large number of real
solutions very quickly. The efficiency is particularly note-
worthy in the cases of N = 7 and N = 8. With a total of
more than 10%* and 10*° complex solutions, respectively, any
approach that aims to find all complex solutions is clearly
impractical. In contrast, with J = 0.9, the NH method was
able to obtain 358 and 1522 real solutions, for the cases of
N = 7, 8 respectively, using a single starting point within
1 min.
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t value along a curve
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FIG. 3. The t value along a curve defined by the Newton homotopy for (5)
for N =6 and J = 0.9. The vertical axis represents the arc-length, that is, the
distance traveled along the curve.

These cases also highlight the ability of NH to obtain
multiple solutions using a single starting point. Figure 3 illus-
trates the t-value along the single curve defined by the Newton
homotopy for (5) with N = 6 and J = 0.9. Here, ¢ (horizontal
axis) is plotted against the arc-length (vertical axis). Note the
numerous crossings of the hyperplane at r = 0, represented by
the light vertical line in the middle. Each crossing produces a
distinct real solution for (5).

Using multiple starting points and tracing multiple
curves, the likelihood for the NH method to obtain many or
all real solutions can be improved substantially. Note that the
curve tracings are completely independent and hence can be
performed in parallel. Table II summarizes the efficiency of
the NH method in finding a large number of real solutions for
(5) using multiple randomly chosen starting points. The tim-
ing information is based on the performance on a cluster of 32
nodes, each having a quad-core Intel Xeon processor running
at 2.4 GHz.

LENNARD-JONES CLUSTERS
We now apply the NH method to finding SPs of atomic
clusters of N atoms bound by the Lennard-Jones potential,>’

TABLE II. The number and percentage of solutions for (5) found using
Newton homotopy with many starting points.

N J No. of start points ~ No. of SPs % SPs Time
4 0.90 1000 83 (All) 100% 7.15s
0.60 1000 291 (All) 100% 110.50 s
0.30 1000 99 187 (All) 100% 121.01's
5 0.90 500 243 99.50 s
0.60 500 1083 139.21s
0.30 500 30971 353.97 s
6 0.90 100 579 47.33s
0.60 100 4172 329.15 s
7 0.90 64 917 61.19s
0.60 64 3965 86.31s
8 0.90 32 1522 58.70's
0.60 32 5694 61.11s

J. Chem. Phys. 141, 121104 (2014)

TABLE III. Number of SPs and distinct energy levels of (6) found using
Newton homotopies.

No. of No. of local No. of transition
N SPs/energy levels minima states
3 9/4 3 1
4 31/11 3 3
5 101/39 1 5
6 204/148 2 6
7 725/265 4 13
8 597/224 8 1
9 991/501 16 1
10 2510/546 22 71
11 9940/552 34 83
12 20 994/623 62 90
13 10 920/289 73 92
14 325171264 37 81
which is defined as
N 12 6
=4 S 1(Z) - (Z) ], ®
i=1 j=i+1 Tij Tij

where € is the pair well depth, 2!/

\/(xi =X+ — v+ (5 —z)?
is the distance between atoms i and j. We take € = o = 1.
Defined in terms of the distances, V) is clearly invari-
ant under rotation and translation. Therefore we can fix
X, =y, =2z, =Yy, =2, = 23 = 0. Hence, there are in total
3N — 6 variables in V), yielding 3N — 6 stationary equations
V'V, = 0. For this model, an extensive search for minima and
saddle points was carried out in Ref. 21 for N up to 13, and a
search for minima and saddles of index one (transition states)
for N = 14 was presented in Ref. 58. Table III shows that NH
can find a large number of SPs for (6) at each N value. It is
worth noting that the results suggest the NH approach is par-
ticularly useful in finding SPs of higher Morse indices (the
number of negative eigenvalues of the Hessian matrix of Vy):
among the SPs found, the majority have Morse index near the
middle of the possible range (from 0 to the number of vari-
ables, 3N — 6), which may be attributed to the fact that there
are exponentially more SPs in the mid-range of the indices
than at the extremes (index 0 and index 3N — 6).

Though the number of SPs shown in this table is much
less than the known collections of SPs found in Refs. 21 and
58, the result is still encouraging since, as a demonstration
of the effectiveness of the NH approach, we have restricted
the computation time to only 24 h in each case. Given the
parallel nature of this approach, the number of SPs that can
be obtained will likely be significantly improved when more
time and computational resource are used.

o is the equilibrium pair

separation, and rij =

CONCLUSION

We have developed a novel implementation of the New-
ton homotopy method which, in our experiments, is much
more efficient at finding SPs of PELs arising in chemical
physics than the usual Newton-Raphson method. Newton ho-
motopies appear to be better behaved at possible singular SPs.
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Our results suggest that the NH method has the potential to
replace the NR method in many contemporary computational
approaches, especially in computational chemistry.
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