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Theoretical aspects of mixed volume

computation via mixed subdivision
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∗
, Tien-Yien Li
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We analyze the computation of mixed volume of tuples of poly-
topes via fine mixed subdivisions. This method expresses the mixed
volume as a sum of easily computable standard volumes of poly-
topes called mixed cells. Mixed cells play a critically important
role in polyhedral homotopy continuation methods, which in turn
are a particularly efficient numerical method for the solution of
systems of polynomial equations. We provide a complete and self-
contained account of the underlying computational convexity tech-
niques, assuming no background in algebraic geometry.

1. Introduction

Throughout this article, n represents an arbitrary but fixed positive integer.
For a set A ⊂ Rm, we denote its closure, interior, boundary and convex hull
by Ā, intA, ∂A and convA respectively. For two sets A,B ⊂ Rm, A+B
denotes their Minkowski sum [25] {a+ b : a ∈ A and b ∈ B} ⊂ Rm. With
a positive real number λ and a set A ⊂ Rm, the scaling of A by the factor
λ is simply the result of applying the scaling to each point of A, that is,
λA = {λa : a ∈ A}. Furthermore, VolnA is the standard volume of Rn,
and 〈·, ·〉 stands for the standard Euclidean inner product on Rn.

For i = 1, . . . , n, let Si be a finite subset of Rn and Qi = convSi. Our
interest will be focused on the n-tuple of sets S = (S1, . . . ,Sn) and the
n-tuple of convex polytopes Q = (Q1, . . . ,Qn). For positive real numbers
λ1, . . . , λn, the n-dimensional volume of the Minkowski sum

λ1Q1 + · · ·+ λnQn = {λ1q1 + · · ·+ λnqn : qi ∈ Qi for i = 1, . . . , n}

is a homogeneous polynomial of degree n in the variables λ1, . . . , λn. We
call the coefficient of the monomial λ1 × · · · × λn in this polynomial the
mixed volume of (Q1, . . . ,Qn) [10, 13, 25] , denoted by M(Q1, . . . ,Qn),
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or simply M(Q). The mixed volume of convex polytopes is a classical con-
cept in combinatorial geometry, dating back to works of Minkowski in the
early 1900s. Mixed volume, thanks to its connections to Hodge theory and
toric varieties (see, e.g., [6, 18, 28]), is an important invariant from convex
geometry that has since proved important in numerous applications related
to solving polynomial systems.

Among various approaches to computing the mixed volumeM(Q) (such
as [3, 7–9, 24]), we will detail fine mixed subdivisions of the n-tuple S =
(S1, . . . ,Sn) introduced in [16]. This method produces as a by-product the
mixed cells which play a critically important role in the construction of effi-
cient polyhedral homotopy continuation methods [5, 15, 16, 20, 21, 29] in
solving polynomial systems numerically. Moreover, fine mixed subdivisions
are also constructions of great interest in the context of tropical algebraic
geometry [17] because they help represent intersections of tropical hypersur-
faces [14].

This article is organized as follows: In §2, the concept of fine mixed
subdivisions is introduced, followed by an exploration of a very important
property of the fine mixed subdivision, its scaling invariance, in §3. We then
detail the concrete method for computing mixed volume via a (fine) mixed
subdivision in §4. In §5 a method for finding a (fine) mixed subdivision
via generic lifting is discussed which also constitutes a constructive proof
to the existence of a (fine) mixed subdivision. This method reduces the
problem of mixed volume computation into a computation to list all mixed
cells in a mixed subdivision. Special cases where some of polytopes in Q =
(Q1, . . . ,Qn) are identical, known as semi-mixed cases, are studied in §6. It
indicates that the computation procedure for computing mixed volume can
be modified to take advantage of these special structures. We conclude the
article in §7 with a brief discussion of the concrete formulation of the mixed
cell enumeration problem in terms of linear programming problems.

2. Fine mixed subdivisions

Recall that a convex polytope P ⊂ Rn is the convex hull of finite many points
in Rn. Since all polytopes considered in this article are convex, they will
therefore simply be known as polytopes. A subset F of polytope P is called a
face of P if there exists α ∈ Rn for which the linear functional f(x) = 〈α,x〉
on Rn attains its minimum over P at F . In this case, the vector α is called
an inner normal of F . When P is an n-dimensional polytope in Rn, its
(n− 1)-dimensional faces are called facets of P . A subdivision of a polytope
Q̃ is a collection of polytopes intersecting only along their common faces
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and whose union is the entire Q̃. As a point of departure, we generalize this
concept to the context of an n-tuple of polytopes.

Definition 1 (Subdivision). A subdivision of S = (S1, . . . ,Sn) is a col-
lection D of n-tuples of the form C = (C1, . . . , Cn), called cells, with ∅ �=
Ci ⊆ Si for each i = 1, . . . , n such that

(a): dim(convC1 + · · ·+ convCn) = n for all C ∈ D,
(b): For a distinct pair A,B ∈ D, if (convA) ∩ (convB) is nonempty,

then it is a common face of both,

(c):
⋃

(C1,...,Cn)∈D(convC1 + · · ·+ convCn) = convS.
For each cell C = (C1, . . . , Cn) ∈ D, we use the notations

typeC = (dim (convC1), . . . , dim (convCn)),

convC = convC1 + · · ·+ convCn,

VolnC = Voln(convC).

Note that the above conditions describe a subdivision of the single poly-
tope Q̃ = Q1 + · · ·+Qn with Qi = convSi for i = 1, . . . , n, with the only
special restriction that each cell in the subdivision must be the Minkowski
sum of n polytopes whose vertices lie in S1, . . . ,Sn respectively.

While a subdivision of Q̃ is important in computing the volume of Q̃
(as long as the volume of each sub-polytope is easy to obtain), in studying
mixed volume computation, it is more important to find the expression of the
volume of the Minkowski sum λ1Q1 + · · ·+ λnQn in relation to the factors
λ1, . . . , λn. For this purpose, a mere subdivision is insufficient. Explicitly, for
λ = (λ1, . . . , λn) ∈ (R+)n, we use the notation λ ◦ S for the scaled version
(λ1S1, . . . , λnSn). Similarly, for a cell C = (C1, . . . , Cn) in a subdivision D of
S = (S1, . . . ,Sn), we used the notation λ ◦ (C1, . . . , Cn) = (λ1C1, . . . , λnCn).
An example below will illustrate that a subdivision D of S = (S1, . . . ,Sn)
does not, in general, extend properly under such “mixed” scaling operation.
Namely,

λ ◦ D := {λ ◦ C = (λ1C1, . . . , λnCn) | C = (C1, . . . , Cn) ∈ D}

may not be a subdivision of λ ◦ S. Inevitably, to make a subdivision scaling
invariant, which turns out to be a critically important property for our
mixed volume computation, additional restrictions are necessary:
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Definition 2 (Mixed subdivision). A subdivision D of S = (S1, . . . ,Sn)
is called a mixed subdivision if, in addition, it satisfies

(d1): For each cell C = (C1, . . . , Cn) ∈ D,
∑n

i=1 dim (convCi) = n,

(d2): For any distinct pair of cells A = (A1, . . . , An) and B = (B1, . . . ,
Bn) in D,

(convA) ∩ (convB) =

n∑
i=1

(convAi ∩ convBi).

Cells of a mixed subdivision are called mixed cells.

As Example 5 below shows, these two conditions are essential in relating
the cells in a subdivision and the volume Voln(λ1Q1 + · · ·+ λnQn) by which
the mixed volume is defined.

A mixed subdivision of S = (S1, . . . ,Sn) may be refined via further sub-
division of individual components of each cell. It is computationally advanta-
geous (as Equation (10) will show later) to consider the most refined mixed
subdivision:

Definition 3 (Fine mixed subdivision). A mixed subdivision D of
S = (S1, . . . ,Sn) is called a fine mixed subdivision if it also satisfies the
condition

(e): For each cell C = (C1, . . . , Cn) ∈ D, convCi is a simplex of dimen-
sion #Ci − 1 for i = 1, . . . , n.

For mixed subdivisions (and fine mixed subdivisions), we then have the
important property of scaling invariance:

Proposition 4. Let D be a (fine) mixed subdivision of S = (S1, . . . ,Sn).
Then for any λ = (λ1, . . . , λn) ∈ (R+)n, the set

λ ◦ D := {λ ◦ C = (λ1C1, . . . , λnCn) | C = (C1, . . . , Cn) ∈ D}

forms a (fine) mixed subdivision of λ ◦ S = (λ1S1, . . . , λnSn).

This proposition lays the ground for the approach of mixed volume com-
putation we shall discuss in this article. The complete proof of it is somewhat
technical, it will be detailed in the next section. In the following example,
we shall illustrate the importance of the condition (d2). Without it, the
subtlety of nice scaling behavior of the subdivision may disappear.
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Example 5 (Subdivision without condition (d2)). With n = 2, con-
sider two finite subsets S1 = {(0, 0), (1, 0), (0, 1)} and S2 = {(0, 0), (1, 0),
(0, 1)} in R2 and their convex hulls Q1 = convS1 and Q2 = convS2 as shown
below

Q1 = Q2 = and Q1 +Q2 =

Let A = ({(0, 0), (1, 0), (0, 1)}, {(0, 0)}), B = ({(0, 0), (1, 0), (0, 1)}, {(0, 1)}),
and C = ({(1, 0), (0, 1)}, {(0, 0), (1, 0)}) be three cells of S = (S1,S2). Let
D = {A,B,C}. The convex hull of each cell becomes:

convA = convB = convC =

Clearly, dim (convA) = dim (convB) = dim (convC) = 2 and the intersec-
tion of any two is their common face. Furthermore, the union of the three
convex hulls

convA ∪ convB ∪ convC =

A

B

C

is indeed the entire Q̃ = Q1 +Q2. Therefore D = {A,B,C} satisfies the def-
inition of a subdivision (conditions (a),(b),(c)). In fact, since the cells A,B,
and C are of types (2, 0), (2, 0), and (1, 1) respectively, D also satisfies condi-
tion (d1). But, the failure of condition (d2) for subdivision D can be easily
verified. As a consequence, it may not behave favorably under the mixed
scaling by λ = (λ1, λ2). Namely, for certain scaling λ = (λ1, λ2), λ ◦ D =
(λ ◦A,λ ◦B,λ ◦ C) may not be a subdivision of λ ◦ S = (λ1S1, λ2S2). The
cells will both separate and overlap as different scaling factors are chosen.

For example, with factors λ = (λ1, λ2) = (1, 2), the scaled version of Q̃ =
Q1 +Q2 is λ ◦ Q̃ = 1 · Q1 + 2 · Q2 :

+ =
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But under the same scaling factors the cells separate with the union of their
convex hulls equal to

conv((1, 2) ◦A) ∪ conv((1, 2) ◦B) ∪ conv((1, 2) ◦ C) = .

It no longer covers the entire λ ◦ Q̃ = 1 · Q1 + 2 · Q2.
Alternatively, with the scaling factor λ = (2, 1), λ ◦ Q̃ = 2 · Q1 + 1 · Q2

becomes

+ = .

Under the same scaling, conv((2, 1) ◦A), conv((2, 1) ◦B), conv((2, 1) ◦ C)
become

, ,

respectively. Clearly there are overlaps among the three.
In both cases, the scaled subdivision λ ◦ D failed to form a subdivision

of λ ◦ Q̃ = λ1Q1 + λ2Q2. The problem lies in the fact that the subdivision
D of S does not satisfy the condition (d2).

Remark 6. The condition (d2) was absent when the “mixed subdivision”
was originally defined in [16]. It first appeared in [6].

3. Scaling invariance of mixed subdivisions

In this section we will provide a detailed proof of Proposition 4 presented
in the last section, that is: If D is a (fine) mixed subdivision of S =
(S1, . . . ,Sn), then for λ = (λ1, . . . , λn) ∈ (R+)n,

λ ◦ D := {λ ◦ C := (λ1C1, . . . , λnCn) : C = (C1, . . . , Cn) ∈ D}

is a (fine) mixed subdivision of λ ◦ S = (λ1S1, . . . , λnSn).
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In the first place, we define the support function: For a nonzero vector
α ∈ Rn and a compact set P ⊂ Rn define

htα P := min
p∈P

〈p,α〉, (P )α := {p ∈ P : 〈p,α〉 = htα(P )}.

Here the notation “htα” is used since this function measures the “height”
of the set P in the direction given by α. It is clear that for λi ∈ R+ and
compact sets Pi ⊂ Rn for i = 1, . . . , n,

htα(λ1P1 + · · ·+ λnPn) = λ1htαP 1 + · · ·+ λnhtαPn

(λ1P1 + · · ·+ λnPn)α = λ1(P1)α + · · ·+ λn(Pn)α.

Furthermore, for compact sets A,B ⊆ Rn,

htα(A ∪B) = min{htα(A), htα(B)},

and hence

(A ∪B)α ⊆ (A)α ∪ (B)α.

For a finite set A ⊂ Rn,

(convA)α = conv (A)α.

For the rest of this section, let D be a mixed subdivision of S = (S1, . . . ,
Sn) and λ = (λ1, . . . , λn) be positive scaling factors. We now explore the
behavior of a mixed subdivision under scaling via the following lemmas.

Lemma 7. For any cell C = (C1, . . . , Cn) ∈ D, if x ∈ conv(λ ◦ C) then
there exists a unique n-tuple (x1, . . . ,xn) with xi ∈ Ci for all i such that
x = λ1x1 + · · ·+ λnxn.

Proof. Suppose there are pairs x1,x
′
1 ∈ convC1, . . . ,xn,x

′
n ∈ convCn such

that

x = λ1x1 + · · ·+ λnxn = λ1x
′
1 + · · ·+ λnx

′
n.

Then λ1(x
′
1 − x1) + · · ·+ λn(x

′
n − xn) = 0. For each i = 1, . . . , n, let Li =

span{Ci − xi}, then dim (Li) = dim (convCi). Clearly convC ⊂ x+ (L1 +
· · ·+ Ln), so dim (convC) ≤ dim(L1 + · · ·+ Ln). By condition (d1) in the
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definition of mixed subdivision,

dim (convC) = n =

n∑
i=1

dim (convCi) =

n∑
i=1

dim (Li).

Therefore the subspaces L1, . . . , Ln must be linearly independent. But x′i −
xi ∈ Li for each i = 1, . . . , n and λ1(x

′
1 − x1) + · · ·+ λn(x

′
n − xn) = 0, so

each λi(x
′
i − xi) must be zero and hence x′i = xi for each i = 1, . . . , n. �

Taking λ = (1, . . . , 1), this lemma implies that for any cell C = (C1, . . . ,
Cn) ∈ D, each point x ∈ convC has a unique representation as a sum x =
x1 + · · ·+ xn with xi ∈ convCi for i = 1, . . . , n. So, the scaling map φDλ :
convC → conv(λ ◦ C) given by

(1) φDλ (x) := λ1x1 + · · ·+ λnxn, for x = x1 + · · ·+ xn

is well defined as a nonsingular affine map.

Lemma 8. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ D. If a1 + · · ·+ an ∈
convA ∩ convB with a1 ∈ convA1, . . . ,an ∈ convAn then a1 ∈ convB1, . . . ,
an ∈ convBn.

Proof. Since a1 + · · ·+ an ∈ convA ∩ convB =
∑n

i=1(convAi ∩ convBi) by
condition (d2) in the definition of mixed subdivision, and convAi ∩ convBi ⊆
convAi for each i = 1, . . . , n, hence ai ∈ convAi ∩ convBi because the rep-
resentation of a1 + · · ·+ an in convA must be unique by Lemma 7. There-
fore, for each i = 1, . . . , n, ai ∈ convBi. �

By this lemma, for any point on the common face of two cells, its rep-
resentations in both cells must be identical, which, along with Lemma 7,
implies that every point x ∈ Q̃ = Q1 + · · ·+Qn has a unique representa-
tion of the form x1 + · · ·+ xn with xi ∈ Qi. Therefore the scaling map (1)
can be extended to a well defined continuous map φDλ : Q̃ → λ ◦ Q̃ = λ1Q1 +
· · ·+ λnQn by

(2) φDλ (x) = λ1x1 + · · ·+ λnxn

where x = x1 + · · ·+ xn with xi ∈ Qi is the unique representation of x given
by the mixed subdivision D. A direct consequence is that under scaling
neighboring cells remain neighbors:

Lemma 9. For A,B ∈ D, if (convA) ∩ (convB) �= ∅, then conv (λ ◦A) ∩
conv (λ ◦B) �= ∅.
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Proof. ForA = (A1, . . . , An) andB = (B1, . . . , Bn), let a ∈ convA ∩ convB,
then a = a1 + · · ·+ an for some ai ∈ convAi for i = 1, . . . , n. But by the
previous lemma, each ai ∈ convBi. Thus for i = 1, . . . , n, λiai is in both
conv λiAi and conv λiBi. Therefore φ

D
λ (a) ∈ conv(λ ◦A) ∩ conv(λ ◦B), and

it cannot be empty. �
Defined in terms of the mixed subdivision D, the scaling map φDλ is well

defined and continuous on all of Q̃ = Q1 + · · ·+Qn.

Lemma 10. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ D with convA ∩
convB �= ∅. If a ∈ convA, b ∈ convB and a �= b, then φDλ (a) �= φDλ (b).

Proof. If both a and b are in convA ∩ convB, then the agreement of φDλ (a)
and φDλ (b), both in conv(λ ◦A), would contradict to the unique representa-
tion of φDλ (a) provided by Lemma 7.

On the other hand, if a �∈ convA ∩ convB, let r = r1 + · · ·+ rn be any
point in (convA) ∩ (convB). Then, since (convA) ∩ (convB) is a face of
both convA and convB, passing through r there exists a hyperplane H
defined by 〈α, •〉 = h for some α ∈ Rn and h ∈ R such that int(convA) and
int(convB) are inH− := {x ∈ Rn | 〈α,x〉 < h} andH+ := {x ∈ Rn | 〈α,x〉 >
h} respectively. Also, r ∈ (convA)α and r ∈ (convB)−α, hence by linear-
ity, ri ∈ (convAi)α and ri ∈ (convBi)−α for each i = 1, . . . , n. That is, with
a = a1 + · · ·+ an and b = b1 + · · ·+ bn,

〈α,ai〉 > 〈α, ri〉 � 〈α, bi〉

for each i = 1, . . . , n. Therefore

〈α,λ ◦ a〉 =
n∑

i=1

λi〈α,ai〉 >
n∑

i=1

λi〈α, ri〉 �
n∑

i=1

λi〈α, bi〉 = 〈α,λ ◦ b〉.

So, λ ◦ a �= λ ◦ b, that is, φDλ (a) �= φDλ (b). �
Consequently, fix a cell A ∈ D, for any neighboring cell B ∈ D, the con-

tinuous map φDλ is also one-to-one on (convA) ∪ (convB).

With these lemmas ready, we now prove Proposition 4.

Proof of Proposition 4. Let D be a (fine) mixed subdivision of the n-tuple
S = (S1, . . . ,Sn), and λ = (λ1, . . . , λn) ∈ (R+)n. For the proof of λ ◦ D :=
{λ ◦ C = (λ1C1, . . . , λnCn) : C = (C1, . . . , Cn) ∈ D} being a (fine) mixed
subdivision of λ ◦ S = (λ1S1, . . . , λnSn), conditions (a), (d1), and (e) in
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Definitions 1, 2, and 3 are clearly valid since for a cell C = (C1, . . . , Cn) ∈ D,
the scaling convCi 
→ conv(λiCi), for each i = 1, . . . , n is a nonsingular affine
transformation which preserves dimensions of affine spaces. Below we verify
that conditions (b),(c), and (d2) hold.

(b) For condition (b), let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two
cells in D. We first show that conv(λ ◦A) ∩ conv(λ ◦B) �= ∅ yields
(convA) ∩ (convB) �= ∅. Suppose that convA ∩ convB = ∅. For x ∈
conv Q̃ and s ∈ [0, 1], define

h(x, s) := φD[(1−s)λ+s1](x)

where 1 = (1, . . . , 1). By the continuity we established for the map
φDλ : Q̃ → λ ◦ Q̃ before, h(x, s) is continuous for each s ∈ [0, 1]. Fur-
thermore, since H(x, 1) = x and H(x, 0) = φDλ (x), so

h(convA, 1) ∩H(convB, 1) = (convA) ∩ (convB) = ∅ and

h(convA, 0) ∩H(convB, 0) = conv(λ ◦A) ∩ conv(λ ◦B) �= ∅.

Thus, there exits s0 ∈ (0, 1), for which

h(convA, s0) ∩H(convB, s0) �= ∅ and

h(convA, s) ∩H(convB, s) = ∅ for 0 < s0 < s ≤ 1.

Let N := {C ∈ D : convC ∩ convA �= ∅}, and

G =

( ⋃
C∈N

convC

)
, T = ∂G \ ∂(conv S).

Geometrically, T may be considered a “shell” that separates convA
and convB. By Lemma 9, neighboring cells remain neighbors after the
mixed scaling, so h(T, s) remains connected for all s ∈ [0, 1]. Therefore
as s decreases from 1, since h(convA, s) and h(convB, s) will meet at
s0, h(convA, s) and h(T, s) must intersect at some s1 ∈ [s0, 1]. But T
consists of boundaries of neighbors of A, so there is a neighbor cell C of
A in D and a point x ∈ convC \ convA such that φD[(1−s1)λ+s1](x) ∈
φD[(1−s1)λ+s1](convA). This violates Lemma 10. Therefore (convA) ∩
(convB) �= ∅.
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Now, since (convA) ∩ (convB) �= ∅ is a common face of both convA
and convB, by the hyperplane separation theorem, there exists a
nonzero vector α such that

(convA) ∩ (convB) = (convA)α = (convB)−α.

We claim that a hyperplane defined by α separates conv(λ ◦A) and
conv(λ ◦B). To prove this, let a′ ∈ (convλ ◦A)α, then a′ = λ1a1 +
· · ·+ λnan for some a1 ∈ convA1, . . . ,an ∈ convAn. By linearity, ai ∈
(convAi)α for each i = 1, . . . , n, and hence a1 + · · ·+ an ∈ (convA)α
= convA ∩ convB. By Lemma 8, ai ∈ convBi for each i, and therefore
a′ = λ1a1 + · · ·+ λnan ∈ conv(λ ◦B). This shows (convλ ◦A)α ⊂
convλ ◦B. Secondly, if a′ ∈ conv(λ ◦A) \ (convλ ◦A)α, by Lemma
7 there exists a unique list a1 ∈ convA1, . . . ,an ∈ convAn such that
a′ = λ1a1 + · · ·+ λnan. Then a1 + · · ·+ an ∈ convA \ convB. By
Lemma 10, a′ �∈ conv(λ ◦B). Combining those two parts shows that
the subset of conv(λ ◦A) inside conv(λ ◦B) is exactly (conv(λ ◦A))α.

By a symmetric argument, the only subset of conv(λ ◦B) inside
conv(λ ◦A) is exactly (conv(λ ◦B))−α. Therefore conv(λ ◦A) ∩ conv
(λ ◦B) = (conv(λ ◦A))α = (conv(λ ◦B))−α is a common face of both.

(c) We need to show M :=
⋃

C∈D conv(λ ◦ C) = λ ◦ Q̃ := λ1Q1 + · · ·+
λnQn where Qi = convSi for i = 1, . . . , n. One direction of the con-
tainment is obvious: since for each C ∈ D, conv(λ ◦ C) = λ ◦ convC ⊆
λ ◦ Q̃, the union is still in λ ◦ Q̃. For the other direction, suppose
M � λ ◦ Q̃, then M has boundary points outside ∂(λ ◦ Q̃). Let q ∈
∂M \ ∂(λ ◦ Q̃). Then, q is in

∂
⋃
C∈D

conv(λ ◦ C) \ ∂(λ ◦ Q̃) ⊆
⋃
C∈D

∂(conv(λ ◦ C)) \ ∂(λ ◦ Q̃),

and there exists a cell C = (C1, . . . , Cn) ∈ D such that q ∈ ∂(conv(λ ◦
C)). Without loss of generality, assume q lies on a facet of conv(λ ◦ C)
but not on any other of its faces. By Lemma 7, there is a unique
list q1 ∈ convC1, . . . , qn ∈ convCn such that q = λ1q1 + · · ·+ λnqn.
Then q1 + · · ·+ qn must be on a facet of convC but not on any other
of its faces.

If q1 + · · ·+ qn ∈ ∂Q̃ then q1 + · · ·+ qn ∈ Qα = (Q1)α + · · ·+
(Qn)α for some nonzero α ∈ Rn and hence
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q = λ1q1 + · · ·+ λnqn

∈ λ1(Q1)α + · · ·+ λn(Qn)α

= (λ ◦ Q̃)α
⊂ ∂(λ ◦ Q̃),

a contradiction. So, q1 + · · ·+ qn �∈ ∂Q̃. Therefore q1 + · · ·+ qn must
be on a common facet of convC and convC ′ for some other cell C ′ =
(C ′1, . . . , C ′n). By Lemma 8, q1 ∈ convC ′1, . . . , qn ∈ convC ′n, and there-
fore q = λ1q1 + · · ·+ λnqn is in both conv(λ ◦ C) and conv(λ ◦ C ′).
Indeed, q is in the interior of conv(λ ◦ C) ∪ conv(λ ◦ C ′), contradict-
ing to the assumption that q ∈ ∂M . Therefore we can only conclude
that M = λ ◦ Q̃.

(d2) Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be cells in D. By condition
(b), conv(λ ◦A) ∩ conv(λ ◦B), if nonempty, is a common face of both
of them, i.e., the intersection is of the form (conv(λ ◦A))α for α ∈ Rn.
So

conv(λ ◦A) ∩ conv(λ ◦B) = (conv(λ ◦A))α

=

(
n∑

i=1

conv λiAi

)
α

=

n∑
i=1

λi conv(Ai)α

=

n∑
i=1

λi(convAi ∩ convBi).

�

4. Computing mixed volume via fine mixed subdivisions

Once a fine mixed subdivision D of S = (S1, . . . ,Sn) is available, the mixed
volume M(Q1, . . . ,Qn) with Qi = convSi can now be computed. This sec-
tion describes the concrete procedure and provides its theoretical justifica-
tion.

We begin with the volume change of a cell C ∈ D under mixed scaling
by λ = (λ1, . . . , λn).
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Proposition 11 (Cell volume under mixed scaling). If D is a fine
mixed subdivision, and a cell C = (C1, . . . , Cn) ∈ D is of type (k1, . . . , kn),
then for λ = (λ1, . . . , λn) ∈ (R+)n

(3) Voln(λ ◦ C) = λk1

1 . . . λkn
n Voln(C).

Proof. Recall that for a mixed cell C = (C1, . . . , Cn) in the fine mixed sub-
division D with type(C) = (k1, . . . , kn), where ki = dim (convCi), we have,
by definition, k1 + · · ·+ kn = n, and each convCi is a simplex of dimen-
sion ki = #Ci − 1. Write Ci = {ci0, . . . , ciki

} for each i = 1, . . . , n. We shall
construct an explicit parametrization of points in conv(λ ◦ C).

Any point x ∈ conv(λ ◦ C) can be written, by Lemma 7, as λ1x1 + · · ·+
λnxn for a unique list of xi ∈ convCi for i = 1, . . . , n. For a fixed i, the point
xi can, in turn, be written as a convex combination of {ci0, . . . , ciki

}, i.e.,
there exist ti,0, . . . , ti,ki

≥ 0 and
∑ki

j=0 ti,j = 1 such that xi =
∑ki

j=0 ti,jc
i
j .

Therefore

x =

n∑
i=1

⎛⎝λi

ki∑
j=0

ti,jc
i
j

⎞⎠ .

Rearranging terms yields

(4) x =

n∑
i=1

λi

[
ki∑
j=0

ti,jc
i
0 +

ki∑
j=1

ti,j(c
i
j − ci0)

]
=

n∑
i=1

λi

[
ci0 +

ki∑
j=1

ti,j(c
i
j − ci0)

]
.

For each i = 1, . . . , n, define the n× ki (empty when ki = 0) matrix

(5) V (Ci) :=
[
ci1 − ci0 · · · ciki

− ci0
]
.

With these, define the block matrices

V (C) =
[
V (C1) · · · V (Cn)

]
(6)

Vλ(C) =
[
λ1 · V (C1) · · · λn · V (Cn)

]
(7)

which are both of size n× (k1 + · · ·+ kn) = n× n (if ki = 0 then the block
V (Ci) does not appear). We may now rewrite (4) as

(8) x =

(
n∑

i=1

ci0

)
+ V (C) ·

⎡⎢⎣t1...
tn

⎤⎥⎦ where ti =

⎡⎢⎣ ti,1...
ti,ki

⎤⎥⎦ for i = 1, . . . , n.

Again, when ki = 0, ti will be absent in (t1, . . . , tn)
T . Recall that for each

i, ti,0 ≥ 0, . . . , ti,ki
≥ 0 and

∑ki

j=0 ti,j = 1, hence 0 ≤∑ki

j=1 ti,j ≤ 1. So, each
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ti = (ti,1, . . . , ti,ki
)T is a point in the standard ki-simplex Δki

(which would
be a single point if ki = 0). Thus, the affine map T : Δk1

× · · · ×Δkn
→ Rn

given by

(9) T (t1, . . . , tn) =

(
n∑

i=1

λic
i
0

)
+ V (C) ·

⎡⎢⎣t1...
tn

⎤⎥⎦
makes every x ∈ conv(λ ◦ C) a point in the image of T . It is clear that
the converse is also true: For every point (t1, . . . , tn) ∈ Δk1

× · · · ×Δkn
,

T (t1, . . . , tn) lies in conv(λ ◦ C). Furthermore, by the uniqueness of rep-
resentation given by Lemma 7, T is also one-to-one. Therefore, conv(λ ◦ C)
is precisely the image of Δk1

× · · · ×Δkn
under the affine transformation T ,

and hence

Voln(λ ◦ C) = Voln(conv(λ ◦ C)) = | detVλ(C)| ·Voln(Δk1
× · · · ×Δkn

)

where Vλ(C), defined in (7), is the Jacobian matrix of T . Since Voln(Δki
) =

1

ki!
, so Voln(Δk1

× · · · ×Δkn
) =

1

k1! · · · kn! . By (7),

detVλ(C) = det
[
λ1 · V1(C) · · · λn · Vn(C)

]
= λk1

1 · · ·λkn
n det

[
V1(C) · · · Vn(C)

]
= λk1

1 · · ·λkn
n detV (C)

since each Vi(C) is a block of size n× ki. It follows that

Voln(λ ◦ C) =
λk1

1 · · ·λkn
n

k1! · · · kn! | detV (C)|.

Taking λ = (1, . . . , 1) yields the special case

(10) Voln(C) =
1

k1! · · · kn! .| detV (C)|.

The assertion of the proposition thus follows by comparing the two equations
above. �
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Proposition 12. If D is a fine mixed subdivision of S = (S1, . . . ,Sn), and
λ = (λ1, . . . , λn) ∈ (R+)n, then, with Qi = convSi,

(11) Voln(λ1Q1 + · · ·+ λnQn) =
∑
C∈D

λ
kC
1

1 · · ·λkC
n

n Voln(C)

where for each C ∈ D, (kC1 , . . . , kCn ) denotes the type of C, i.e., Voln(λ1Q1 +
· · ·+ λnQn) is a homogeneous polynomial of degree n in (λ1, . . . , λn).

Proof. By Proposition 4, λ ◦ D = {λ ◦ C | C ∈ D} is also a fine mixed sub-
division of λ ◦ S. Therefore the volume Voln(λ1Q1 + · · ·+ λnQn) is the sum
of the volumes of the cells in λ ◦ D, and by applying Proposition 11 for-
mula (11) holds.

Also note that for each cell C ∈ D of type (kC1 , . . . , k
C
n ), condition (d1)

in the definition of fine mixed subdivision requires that kC1 + · · ·+ kCn must
be exactly n. Therefore each term in the above polynomial expression has a
(total) degree of n in (λ1, . . . , λn), and hence it is homogeneous. �

It follows that in the homogeneous polynomial Voln(λ1Q1 + · · ·+ λnQn),
the contribution of each cell in D is a monomial term in λ1, . . . , λn. Its
coefficient is determined by the volume of the cell, and its exponents are
given by the type of the cell. Recall that, by definition, the mixed vol-
umeM(Q1, . . . ,Qn) is the coefficient of λ1 × · · · × λn in Voln(λ1Q1 + · · ·+
λnQn), so, from (11),

(12) M(Q1, . . . ,Qn) =
∑
C∈D

type(C)=(1,...,1)

Voln(C).

Moreover, since D is a fine mixed subdivision, each cell C ∈ D of type
(1, . . . , 1) is necessarily of the form C = ({c1, c′1}, . . . , {cn, c′n}) where {ci, c′i}
⊆ Si. So each Vi(C), defined in (5), consists of a single column, and

V (C) =
[
c1 − c′1 · · · cn − c′n

]
as defined in (6). Accordingly, from (10),

(13) M(Q1, . . . ,Qn) =
∑

({c1,c′
1},...,{cn,c′

n})∈D

∣∣det [c1 − c′1 · · · cn − c′n
]∣∣ .
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Remark 13. Formula (12) reveals an important property: The mixed vol-
ume is indeed nonnegative, which is not immediately obvious from its defini-
tion. Moreover, when S consists of integral lattice points the mixed volume
M(Q) is an integer and in fact counts the generic number of complex roots
of a polynomial system as in the Bernshtein’s theorem [1, 16, 23, 27].

The above construction suggests a clear strategy for computing mixed
volume: With a fine mixed subdivision of S = (S1, . . . ,Sn), one may system-
atically enumerate all the mixed cells of type (1, . . . , 1), and then the sum
of the volume of all these cells as given in (10) is precisely the mixed volume
M(Q1, . . . ,Qn).

5. Mixed subdivisions induced by generic lifting

We now discuss a constructive procedure, developed in [2, 16], with which a
fine mixed subdivision of S = (S1, . . . ,Sn) can be found.

For each i = 1, . . . , n, let ωi : Si → R be a function that assigns each
point in Si a real number. The function ω := (ω1, . . . ,ωn) is known as a
lifting function on S = (S1, . . . ,Sn). For each i = 1, . . . , n, consider the
“lifted” versions of Si and convS given by

Ŝi := {(a,ωi(a)) : a ∈ Si} and conv Ŝ := Ŝ1 + · · ·+ Ŝn

respectively. Let π : Rn+1 → Rn be the projection by erasing the last coor-
dinate, so π(Ŝi) = Si for each i = 1, . . . , n, and π(conv Ŝ) = convS.

Consider the polytope conv Ŝ, now in Rn+1. We are interested in its
“lower hull” with respect to the projection π: A vector α̂ ∈ Rn+1 is said
to be upward pointing if it has positive last coordinate. Without loss of
generality, we may assume the last coordinate of an upward pointing α̂ is
1, that is, α̂ = (α1, . . . , αn, 1) ∈ Rn+1. A face F̂ of conv Ŝ is called a lower
face if its inner normal is upward pointing, namely, there exists an α̂ =
(α1, . . . , αn, 1) ∈ Rn+1 such that F̂ = (conv Ŝ)α̂. It is important to note that
for a lower face F̂ of conv Ŝ, by linearity,

F̂ = (conv Ŝ)α̂ = (conv Ŝ1)α̂ + · · ·+ (conv Ŝn)α̂

for some upward pointing normal α̂. In other words, a lower face of conv Ŝ is
necessarily a Minkowski sum of n lower faces of conv Ŝ1, . . . , conv Ŝn respec-
tively sharing a common inner normal of the form α̂ = (α1, . . . , αn, 1). The
lower hull of conv Ŝ is the collection of all of its n-dimensional lower faces.
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We shall impose a “genericity” condition on the lifting function. To
facilitate the discussion, the following notation will be used: Fix any i ∈
{1, . . . , n} and a subset Xi = {xi,1, . . . ,xi,mi

} ⊆ Si, containing mi points
for some mi > 0, define

V (Xi) =

⎛⎜⎜⎜⎝
x�i,2 − x�i,1
x�i,3 − x�i,1

...
x�i,mi

− x�i,1

⎞⎟⎟⎟⎠ and Ω(Xi)=

⎛⎜⎜⎜⎝
ωi(xi,1)− ωi(xi,2)
ωi(xi,1)− ωi(xi,2)

...
ωi(xi,1)− ωi(xi,mi

)

⎞⎟⎟⎟⎠ .(14)

Definition 14. A lifting function ω = (ω1, . . . ,ωn) for S = (S1, . . . ,Sn) is
said to be generic if for any choice of n (possibly empty) subsets Xi =
{xi,1, . . . ,xi,mi

} ⊆ Si for i = 1, . . . , n with mi ≥ 0 the linear system

(15)

⎛⎜⎜⎜⎝
V (X1)
V (X2)

...
V (Xn)

⎞⎟⎟⎟⎠ ·α =

⎛⎜⎜⎜⎝
Ω(X1)
Ω(X2)

...
Ω(Xn)

⎞⎟⎟⎟⎠
in α has an isolated solution only when the rank of the matrix on the left
equals the number of its rows. Note that if the subset Xi is empty, the blocks
V (Xi) and Ω(Xi) will not appear in the above equation.

Remark 15. One important observation is that almost all liftings are
generic in the sense of Definition 14, justifying the choice of the terminology.
More precisely, for each i = 1, . . . , n, we can identify ωi : Si → R with its
images and consider ωi as an element in RNi where Ni = #Si. Similarly, we
consider ω = (ω1, . . . ,ωn) as an element in RN where N = N1 + · · ·+Nn.
If ω is not generic, then there exists a choice of n (possibly empty) sub-
sets {xi,1, . . . ,xi,mi

} ⊆ Si for i = 1, . . . , n with mi > 0 for which the rank of
the matrix on the left hand side of the linear system (15) is less than the
number of its rows but the system has a solution. This condition forces ω
to be in an affine subspace of lower dimension. Since there are only finitely
many ways of choosing subsets of S1, . . . ,Sn, the set of non-generic liftings
is thus contained in a finite union of lower dimensional affine subspaces of
RN determined by the points in S. This set is necessarily of measure zero.
Indeed, this set is closed and nowhere dense. This is of great practical impor-
tance: one can choose a lifting at random, then the probability of choosing
a non-generic one is zero.
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Proposition 16 (Induced fine mixed subdivision). Let ω = (ω, . . . ,
ωn) be a generic lifting for S = (S1, . . . ,Sn), and let D̂ω be the collection of
all Ĉ = (Ĉ1, . . . , Ĉn) with Ĉi ⊆ Ŝi for each i = 1, . . . , n such that

1) conv Ĉi is a face of conv Ŝi for each i = 1, . . . , n;

2) The n faces conv Ĉi of conv Ŝ1, . . . , conv Ŝn respectively share a com-
mon inner normal of the form α̂ = (α1, . . . , αn, 1); and

3) dim(conv(Ĉ)1 + · · ·+ conv(Ĉ)n) = n.

Then the projection

Dω = {(π(Ĉ1), . . . , π(Ĉn)) | Ĉ = (Ĉ1, . . . , Ĉn) ∈ D̂ω}

form a fine mixed subdivision of S = (S1, . . . ,Sn), called the fine mixed
subdivision induced by the lifting function ω = (ω, . . . ,ω).

Proof. We shall prove Dω satisfies the conditions (a),(b),(c),(d1),(d2) and
(e) in Definitions 1, 2, and 3 of a fine mixed subdivision of S = (S1, . . . ,Sn).
(a) We need to show that for any C = (C1, . . . , Cn) ∈ Dω, dim (convC) =

n. Since conv Ĉ is a lower facet of conv Ŝ, there exists a vector α̂ =
(α, 1) ∈ Rn+1 such that conv Ĉ = (conv Ŝ)α̂. Now suppose dim (convC)
< n, then convC must lie in some hyperplane in Rn, that is, there
exists a vector β ∈ Rn such that convC ⊆ {x ∈ Rn : 〈x,β〉 = h} for
some h ∈ R. Then for any x̂ = (x1, . . . , xn+1) ∈ conv Ĉ, x := π((x1, . . . ,
xn+1)) ∈ convC, and so 〈x̂, (β, 0)〉 = 〈x,β〉+ xn+1 · 0 = h. Thus conv Ĉ
satisfies two independent linear equations in Rn+1:

〈x̂, (α, 1)〉 = htα̂(conv Ĉ)

〈x̂, (β, 0)〉 = h ,

and its dimension is therefore at most n+ 1− 2 = n− 1, contradicting
to the fact that conv Ĉ is a facet of an (n+ 1)-dimensional polytope
conv Ŝ by construction. So convC must be n-dimensional.

(b) For any two distinct cells A,B ∈ Dω, if F = (convA) ∩ (convB) ⊂ Rn

is nonempty, we need to show that F is a common face of both convA
and convB. Let F̂ := conv Â ∩ conv B̂ ⊂ Rn+1. Clearly, F is a projec-
tion of F̂ onto {en+1}⊥ where en+1 = (0, . . . , 0, 1)� ∈ Rn+1. By defini-
tion, conv Â and conv B̂ are lower facets of conv Ŝ, so there exist vec-
tors α̂ = (α, 1) and β̂ = (β, 1) in Rn+1 such that conv Â = (conv Ŝ)α̂
and conv B̂ = (conv Ŝ)β̂. Let h1 = htα̂(conv Ŝ) and h2 = htβ̂(conv Ŝ).



Theoretical aspects of mixed volume computation 231

For any x ∈ F , there exists t ∈ R such that x̂ = (x, t) ∈ F̂ = conv Â
∩ conv B̂. Thus

h1 = 〈x̂, α̂〉 = 〈x, α〉+ t, h2 = 〈x̂, β̂〉 = 〈x,β〉+ t.

Taking the difference of these two equations yields

〈x,β −α〉 = h2 − h1,

which holds for any x ∈ F . For any x ∈ convA \ F , there exists s ∈ R

such that x̂ = (x, s) is in conv Â but not in conv B̂. Consequently,

h1 = 〈x̂, α̂〉 = 〈x,α〉+ s, h2 < 〈x̂, β̂〉 = 〈x,β〉+ s.

Again, taking the difference of these two equations results in

〈x,β −α〉 > h2 − h1.

Therefore the linear functional 〈•,β −α〉 minimizes over convA at
F , and hence F is a face of convA. By the same argument, functional
〈•,α− β〉 minimizes over convB at F , and hence F is a face of convB
as well. Therefore F is a common face of convA and convB.

(c) We need to show
⋃

C∈Dω
convC = convS. Clearly, convC ⊆ conv S

for each C ∈ Dω, so
⋃

C∈Dω
convC ⊆ convS. For the other direction,

fix any q ∈ conv S, let W = ({q} × R) ∩ conv Ŝ, which is a closed set.
Since conv Ŝ is a polytope, W must be bounded and hence com-
pact, so � = min{t ∈ R : (q, t) ∈ conv Ŝ} exists. Let q̂ = (q, �), then
q̂ ∈ ∂ (conv Ŝ), so there must be an n-dimensional facet F̂ of conv Ŝ
containing q̂. We shall show that F̂ is indeed a lower facet.

First, if dim(conv Ŝ) = n, then all faces are lower faces. Other-
wise, let α̂ = (α1, . . . , αn+1) be the inner normal of F̂ . For ε > 0 small
enough so that (q, �+ ε) ∈ conv Ŝ, then

〈(q, �+ ε), α̂〉 = 〈q̂, α̂〉+ ε · αn+1 > 〈q̂, α̂〉

since 〈•, α̂〉 minimizes on conv Ŝ at F̂ . This implies αn+1 > 0. There-
fore F̂ is a lower facet, and so there is a cell C ∈ Dω such that conv Ĉ =
F̂ ; in particular, q ∈ convC. Therefore

⋃
C∈Dω

convC ⊇ conv S.



232 T. Chen, T.-Y. Li and X. Wang

(d2) Let cellsA = (A1, . . . , An), B = (B1, . . . , Bn) ∈ Dω with F := (convA)
∩ (convB) being nonempty. We shall show

convA ∩ convB =

n∑
i=1

(convAi) ∩ (convBi).

One direction of the containment is obvious: since for any collec-
tion of xi ∈ (convAi) ∩ (convBi) for i = 1, . . . , n, x := x1 + · · ·+ xn

is in both convA and convB and hence
∑n

i=1(convAi) ∩ (convBi) ⊆
(convA) ∩ (convB).

For the other direction, since conv B̂ is a lower facet of conv Ŝ, let
β̂ = (β, 1) ∈ Rn+1 be its inner normal, then

conv B̂ = (conv Ŝ)β̂ =

n∑
i=1

(conv Ŝi)β̂ with (Ŝi)β̂ = conv B̂i.

Picking any a ∈ F , consider its corresponding â ∈ (conv Â) ∩ (conv B̂).
Then â = â1 + · · ·+ ân for some âi ∈ conv Âi. Moreover, â ∈ conv B̂
implies

〈â, β̂〉 =

n∑
i=1

〈âi, β̂〉 = htβ̂(conv Ŝ) =

n∑
i=1

htβ̂(conv Ŝi).

But for each i = 1, . . . , n, 〈âi, β̂〉 ≥ htβ̂(conv Ŝi). Therefore 〈âi, β̂〉 =
htβ̂(conv Ŝi) for i = 1, . . . , n, and hence each âi ∈ (conv Ŝi)β̂ = conv B̂i.

Consequently, âi ∈ (conv Âi) ∩ (conv B̂i) for each i = 1, . . . , n, thus
â =

∑n
i=1 âi ∈

∑n
i=1(conv Âi) ∩ (conv B̂i). Projection via π yields a ∈∑n

i=1(convAi) ∩ (convBi) and therefore

(convA) ∩ (convB) ⊆
n∑

i=1

(convAi) ∩ (convBi).

(e) For a cell C = (C1, . . . , Cn) ∈ Dω, we fix an i in {1, . . . , n} and consider
Ci only. Let mi = #Ci − 1, then Ci = {ci,0, . . . , ci,mi

} ⊂ Si. Let α̂ =
(α, 1) be an inner normal of conv Ĉ in conv Ŝ. Then

(16) 〈ĉi,j , α̂〉=〈(ci,j ,ωi(ci,j)), (α, 1)〉=〈ci,j ,α〉+ωi(ci,j)=htα̂(conv Ŝi)
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for each j = 0, . . . ,mi. This can be written as

(17)

⎛⎜⎝ c�i,1 − c�i,0
...

c�i,mi
− c�i,0

⎞⎟⎠ ·α =

⎛⎜⎝ ωi(ci,0)− ωi(ci,1)
...

ωi(ci,0)− ωi(ci,mi
)

⎞⎟⎠ .

Suppose convCi is not a simplex, then those mi points ci,0, . . . , ci,mi

must be affinely dependent. It follows that matrix on the left hand
side of the above equation is of rank less than mi. This contradicts to
the genericity of the lifting (Definition 14).

(d1) Fix a cell C = (C1, . . . , Cn) ∈ Dω with Ci = {c0, . . . , cmi
} where mi =

#Ci − 1 for each i = 1, . . . , n. Assume condition (e) is already satis-
fied, that is, for each i = 1, . . . , n, convCi is a simplex of dimension
mi. Then it is enough to show that m1 + · · ·+mn = n. Let α̂ = (α, 1)
be an inner normal of conv Ĉ in conv Ŝ. Then α̂ satisfies (16) for each
i = 1, . . . , n and j = 0, . . . ,mi. Similar to (17), these equations can be
combined into

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c�1,1 − c�1,0
...

c�1,m1
− c�1,0
...

c�n,1 − c�n,0
...

c�n,m1
− c�n,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1(c1,0)− ω1(c1,1)
...

ω1(c1,0)− ω1(c1,m1
)

...
ωn(cn,0)− ωn(cn,1)

...
ωn(cn,0)− ωn(cn,mi

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, the matrix on the left hand side of the above equation is of the
size (m1 + · · ·+mn)× n. By the genericity assumption (Definition 14)
the rank of this matrix must be m1 + · · ·+mn. Therefore m1 + · · ·+
mn ≤ n.

Recall that condition (a) asserts dim (convC)=n. Since m1+· · ·+
mn = dim (convC1)+· · ·+dim (convCn) ≥ n, thus m1+· · ·+mn = n.

Therefore Dω satisfies condition (a)-(e) in Definition 1, 2, and 3, and
hence it is a fine mixed subdivision for S. �
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6. The semi-mixed case

The n-tuple S = (S1, . . . ,Sn) is called semi-mixed of type (r1, . . . , rm)
when Si’s are not all distinct, but they are equal within m blocks of sizes
r1, . . . , rm, i.e., there are m sets S(1), . . . ,S(r) ⊂ Rn such that S(i) = Si,1 =
· · · = Si,ri where

Si,j ∈ {S1, · · · ,Sn} for 1 ≤ i ≤ m, 1 ≤ j ≤ ri,

and r1 + · · ·+ rm = n. S is called unmixed if m = 1, i.e., when all the
S ′is are identical. S is called fully mixed if m = n, i.e., when the S ′is
are distinct. We abbreviate S = (S(1), r1; S(2), r2; · · · ; S(m), rm), and Q =
(Q(1), r1;Q(2), r2; · · · ; Q(m), rm), with Q(i) = convS(i) for i = 1, . . . ,m.

To calculate the mixed volume of a semi-mixed system S = (S(1), r1;
S(2), r2; · · · ; S(m), rm), one may, of course, follow the standard procedure
described in §4 without paying a special attention to its semi-mixed struc-
ture. However, when this special structure is taken into account, a revised
procedure may be developed with a great reduction in the amount of compu-
tation, especially when S is unmixed such as the nine-point path synthesis
problem for four-bar linkages [30] in mechanical design.

Now, the mixed volume M(Q(1), r1;Q(2), r2; · · · ;Q(m), rm) is, by def-
inition, the coefficient of

∏r1
j=1 λ1,j · · ·

∏rm
j=1 λm,j in the expansion of the

homogeneous polynomial

Voln

⎛⎝ m∑
i=1

ri∑
j=1

λijQ(i)

⎞⎠ = Voln

⎛⎝ m∑
i=1

⎛⎝ ri∑
j=1

λij

⎞⎠Q(i)

⎞⎠ .

Let

βi =

ri∑
j=1

λi,j for i = 1, . . . ,m,

then the above expression becomes

R(β1, . . . , βm) := Voln(β1Q(1) + β2Q(2) + · · ·+ βmQ(m))

which is a homogeneous polynomial of degree n in the βi’s. Notice that by
the multinomial expansion,

βk
i =

⎛⎝ ri∑
j=1

λij

⎞⎠k

=
∑

t1+·+tri=k

k!

t1! · · · tri !
ri∏
j=1

λ
tj
ij .
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Therefore a monomial in βi’s can be expanded as

βk1

1 · · ·βkm
m =

m∏
i=1

⎛⎝ ∑
ti1+···+tiri=ki

ki!

ti1! · · · tiri !
ri∏
j=1

λ
tij
ij

⎞⎠ .

Clearly, such an expansion involves the monomial
∏m

i=1

∏r1
j=1 λ1,j precisely

when ti,j = 1 for all i = 1, . . . ,m and j = 1, . . . , ri which yields ki =∑ri
j=1 ti,j =

∑ri
j=1 1 = ri. Therefore in

R(β1, . . . , βm) = R

⎛⎝ ⎛⎝ r1∑
j=1

λ1,j

⎞⎠ , . . . ,

⎛⎝ rm∑
j=1

λm,j

⎞⎠⎞⎠ ,

only the monomial βr1
1 · · ·βrm

m involves
∏m

i=1

∏r1
j=1 λi,j in which it appears

with coefficient r1! · · · rm!.

Proposition 17. For semi-mixed system S = (S(1), r1; S(2), r2; · · · ; S(m),
rm), the mixed volume M(Q(1), r1;Q(2), r2; · · · ;Q(m), rm) is the coefficient
of βr1

1 · · ·βrm
m in the polynomial

Voln(β1Q(1) + β2Q(2) + · · ·+ βmQ(m))

divided by r1! · · · rm!.

To utilize this observation in mixed volume computations, we slightly
extend the framework of cells in which the mixed subdivision is defined
for the Minkowski sum of polytopes in previous sections. With S(i) being a
finite subset of Rn for i = 1, . . . ,m, and m ≤ n, a cell of the m-tuple S =
(S(1), . . . ,S(m)) is now an m-tuple C = (C1, . . . , Cm) of nonempty subsets
Ci ⊆ S(i). With similar notations

typeC = (dim (convC1), . . . , dim (convCm))

convC = convC1 + · · ·+ convCm

VolnC = Voln(convC),

we give the following:

Definition 18 (Fine semi-mixed subdivision). A fine semi-mixed
subdivision of the m-tuple S = (S(1), . . . ,S(m)) is a collection D of cells of
S such that
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(a): dim (convC) = n for all C ∈ D;
(b): For a distinct pair A,B ∈ D, if (convA) ∩ (convB) is nonempty,

then it is a common face of both;

(c):
⋃

C∈D convC = convS(1) + · · ·+ conv S(m);

(d1): For each cell C = (C1, . . . , Cm) ∈ D, ∑m
i=1 dim (convCi) = n

(d2): For distinct pair of cells A = (A1, . . . , Am), B = (B1, . . . , Bm) ∈ D,

(convA) ∩ (convB) =

m∑
i=1

(convAi ∩ convBi);

(e): For each cell C = (C1, . . . , Cm) ∈ D, convCi is a simplex of dimen-
sion #Ci − 1 for i = 1, . . . ,m.

Notice that replacing all the m’s by n in the above yields exactly the
same fine mixed subdivision in Definition 1, 2, and 3. Most importantly,
the properties of fine mixed subdivisions proved in §2 can be preserved with
minor adjustments. In particular, the scaling invariance of a fine semi-mixed
subdivision remains valid:

Proposition 19. If D is a fine semi-mixed subdivision of the m-tuple S =
(S(1), . . . ,S(m)), and β = (β1, . . . , βm) ∈ (R+)m, the set

β ◦ D := {β ◦ C = (β1C1, . . . , βmCm) : C = (C1, . . . , Cm) ∈ D}

forms a fine semi-mixed subdivision of β ◦ S = (β1S(1), . . . , βmS(m)).

Also, similar to (11), the volume Voln(β1Q(1) + β2Q(2) + · · ·+ βmQ(m))
can be expressed in terms of volumes of cells of a fine semi-mixed subdivision:

Proposition 20. If D is a fine semi-mixed subdivision of the m-tuple S =
(S(1), . . . ,S(m)), and β = (β1, . . . , βm) ∈ (R+)m,

(18) Voln(β1Q(1) + · · ·+ βmQ(m)) =
∑
C∈D

β
kC
1

1 · · ·βkC
m

m Voln(C)

where (kC1 , . . . , k
C
m) denotes the type of C = (C1, . . . , Cm) ∈ D.
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Similar to (6), in this semi-mixed context we define

(19) V (C) =
[
V (C1) · · · V (Cm)

]
in which the block V (Ci) will not appear if #Ci = 1. When D is a fine semi-
mixed subdivision, similar to (10), the volume of a cell C = (C1, . . . , Cm) ∈
D can be computed via the formula

Voln(C) =
1

kC1 ! · · · kCm!
| detV (C)|

where (kC1 , . . . , k
C
m) = type(C). This yields the expression of the mixed vol-

ume of a semi-mixed system as a generalization of (12):

Proposition 21. Let D be a fine semi-mixed subdivision of the semi-mixed
system S = (S(1), r1; · · · ; S(m), rm). The mixed volumeM(Q(1), r1; · · · ;Q(m),
rm) of this system is

(20) M(Q(1), r1;Q(2), r2; · · · ;Q(m), rm) =
∑
C∈D

type(C)=(r1,...,rm)

| detV (C)|,

with V (C) as defined in (19).

Moreover, similar to inducing a fine mixed subdivision for the fully mixed
case S = (S1, . . . ,Sn) by a generic lifting function as described in §5, the
same procedure can be followed almost line by line to construct a induced
fine semi-mixed subdivision for a semi-mixed system S = (S(1), r1; · · · ; S(m),
rm). Hence Proposition 16 can be generalized to the semi-mixed system:

Proposition 22 (Induced fine semi-mixed subdivision). Let ω =
(ω1, . . . ,ωm) be a generic lifting function for the m-tuple S = (S(1), . . . ,S(m)).
Define

Ŝ(i) := {(a,ωi(a)) : a ∈ S(i)},
for each i = 1, . . . ,m. Let D̂ω be the collection of all Ĉ = (Ĉ1, . . . , Ĉm) with
Ĉi ⊆ Ŝ(i) for each i = 1, . . . ,m such that

1) conv Ĉi is a face of conv Ŝi for each i = 1, . . . ,m;

2) The m faces conv Ĉi of conv Ŝ(i) for i = 1, . . . ,m respectively share a
common inner normal of the form α̂ = (α1, . . . , αn, 1); and

3) dim (conv Ĉ1 + · · ·+ conv Ĉm) = n.
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Then the projection of D̂ω

Dω = {(π(Ĉ1), . . . , π(Ĉm))) : (Ĉ1, . . . , Ĉm) ∈ D̂ω}

form a fine semi-mixed subdivision of S = (S(1), . . . ,S(m)), and it is called
the fine semi-mixed subdivision induced by the lifting function ω.

7. Enumeration of mixed cells

The crux of our strategy for calculating mixed volume M(Q(1), r1; · · · ;
Q(m), rm) of a semi-mixed system S = (S(1), r1; · · · ; S(m), rm), whereQ(i) =
conv S(i), is the identification of the mixed cells of type (r1, . . . , rm) in
the fine semi-mixed subdivision Dω induced by the generic lifting function
ω := (ω1, . . . ,ωm) as provided by Proposition 22. Algebraically, a mixed cell
C ∈ Dω of type (r1, . . . , rm), is an m-tuple

(21) C = ( {a(1)
0 , . . . ,a(1)

r1 }, . . . , {a(m)
0 , . . . ,a(m)

rm } )

with a
(i)
j ∈ S(i) for i = 1, . . . ,m and j = 0, . . . , ri for which there exists an

α = (α1, . . . , αn) ∈ Rn such that for each i = 1, . . . ,m,

(22)
〈â(i)

0 , α̂〉 = 〈â(i)
j , α̂〉 for j = 0, . . . , ri

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for a ∈ S(i)

where α̂ := (α, 1)� = (α1, . . . , αn, 1)
�. This algebraic description of mixed

cells in Dω of type (r1, . . . , rm) is the basis on which mixed cell enumeration
algorithms are developed: the problem is now reduced to a search problem
for choices of r1, . . . , rm points from S(1), . . . ,S(m) respectively for which
the system of inequalities (22) has a solution. There are several approaches
to carrying out such search. One of the most efficient class of algorithms is
based on the idea of systematic “extension of subfaces”.

This scheme first locates the r1-dimensional lower faces of Q̂(1), that is,
the faces of Q̂1 that has an inner normal with 1 being the last coordinate.
These faces are known as level-1 “subfaces”. Namely, one first finds all pos-

sible choices {a(1)
0 , . . . ,a

(1)
r1 } of r1 + 1 points in S(1) for which there exists

an α̂ = (α1, . . . , αn, 1)
� ∈ Rn+1 such that

(23)
〈â(1)

0 , α̂〉 = 〈â(1)
j , α̂〉 for j = 0, . . . , r1

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for a ∈ S(1) .
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The testing for the existence of solutions for the above system of inequal-
ities is generally known as the “Phase I ”, or feasibility, problem in Linear
Programming.

Then for each of these level-1 subfaces, systematic attempts are made
to “extend” it by finding a r2-dimensional lower face of Q̂(2) so that the
two lower faces (of Q̂1) and Q̂(2) respectively) can share a common inner
normal of the form α̂ = (α1, . . . , αn, 1)

� of both Q̂(1) and Q̂(2). That is,

fixing a level-1 subface defined by a
(1)
0 , . . . ,a

(1)
r1 one attempts to find a r2-

dimensional lower face conv{â(2)
0 , . . . , â(2)

r2 } of Q̂(2) with â
(2)
j ∈ Ŝ(2) for each

j = 0, . . . , r2 such that the system (23) and the system

(24)
〈â(2)

0 , α̂〉 = 〈â(2)
j , α̂〉 for j = 0, . . . , r2

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for a ∈ S(2)

have a common solution α̂ = (α1, . . . , αn, 1)
� ∈ Rn+1. The testing for the

existence of a common solution is, again, a classical Phase I problem in Lin-
ear Programming. Note that this enlarged system of (23) and (24) may not

have a solution for all choices of {â(2)
0 , . . . , â(2)

r2 } ⊆ Ŝ(2). In this case, no lower

face of Q̂(2) can extend the chosen level-1 subface, and the extension attempt
will be restarted on some other level-1 subfaces. On the other hand, the pos-
sible r2-dimensional lower faces of Q̂(2) that can extend the chosen level-1
subface may not be unique, and each of such possible extension is known as a
level-2 subface. They will be extended further individually into possible level-
3 subfaces. This process may continue until one reaches level-m subfaces,
each of which is an m-tuple of lower faces of Q̂(1), . . . , Q̂(m) with dimensions
r1, . . . , rm respectively that share a common inner normal vector of the form
α̂ = (α1, . . . , αn, 1)

�. This is precisely a cell in D̂ω whose projection (by eras-
ing the last coordinate) is a fine semi-mixed cell of type (r1, . . . , rm) in Dω as
given in Proposition 22. Once all such mixed cells of type (r1, . . . , rm) have
been found, the mixed volume M(Q(1), r1; · · · ; Q(m), rm) of a semi-mixed
system S = (S(1), r1; · · · ; S(m), rm) can be computed via formula (20).

This scheme of “extension of subfaces” has been developed into a class
of efficient, robust, and highly parallel algorithms which have been imple-
mented in software packages such as [4, 11, 12, 19, 22, 26].
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