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MIXED VOLUME COMPUTATION IN PARALLEL

Tianran Chen, Tsung-Lin Lee1 and Tien-Yien Li2

Abstract. Efficient algorithms for computing mixed volumes, via the computa-
tion of mixed cells, have been implemented in DEMiCs [18] and MixedVol-2.0
[13]. While the approaches in those two packages are somewhat different, they
follow the same theme and are both highly serial. To fit the need for the parallel
computing, a reformulation of the algorithms is inevitable. This article proposes
a reformulation of the algorithm for the mixed volume computation rooted from
algorithms in graph theory, making it much more fine-grained and scalable. The
resulting parallel algorithm can be readily adapted to both distributed and shared
memory computing systems. Illustrated by the numerical results on several dif-
ferent architectures, the speedups of our parallel algorithms for the mixed volume
computation are remarkable.

1. INTRODUCTION

For j = 1, . . . , n, let Sj be a finite subset of N
n
0 ≡ (N ∪ {0})n, and S =

(S1, . . . , Sn). Let Qj be the convex hull of Sj for j = 1, . . . , n. For positive
numbers λ1, . . . , λn, the n-dimensional volume of the Minkowski sum

λ1Q1 + · · ·+ λnQn ≡ {λ1q1 + · · ·+ λnqn | qj ∈ Qj , j = 1, . . . , n}

is a homogeneous polynomial of degree n in the variables λ1, . . . , λn. The coefficient
of the monomial λ1 × · · · × λn in this polynomial is called the mixed volume of
S = (S1, . . . , Sn), denoted by M(S).

Besides other applications, the mixed volume computation of S = (S1, . . . , Sn)
plays a vitally important role in approximating all the isolated zeros of a polynomial
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system P (x) = (p1(x), . . . , pn(x)) by the homotopy continuation method [7, 12, 14,
15, 16], where, with x = (x1, . . . , xn) ∈ C

n and a = (a1, . . . , an) ∈ N
n
0 ,

pj(x) =
∑
a∈Sj

cj,axa , j = 1, . . . , n

where cj,a ∈ C∗ = C \ {0} and xa = xa1
1 · · ·xan

n . Here Sj , a finite subset of Nn
0 , is

called the support of pj(x), and S = (S1, . . . , Sn) is called the support of P (x). We
henceforth call all those Si’s in the definition of mixed volume given above supports
in this article.

In 2005, a software package, MixedVol [10] (produced by T. Gao, T.Y. Li and
M. Wu), emerged which led then existing codes [7, 9, 17] for mixed volume com-
putation by a substantial margin. Soon after MixedVol was published, T. Mizutani,
A. Takeda and M. Kojima [18] developed a more advanced mixed volume computa-
tion package, DEMiCs, which considerably overshadowed MixedVol in speed. Later,
a revised version of MixedVol, MixedVol-2.0 [13], has reached the speed range of
DEMiCs but with much accurate results in many situations in application [13]. In any
event, while all those successfully developed algorithms in computing mixed volumes
mentioned above have somewhat different approaches, they followed the same theme
and are highly serial. In this article, we propose a reformulation of our algorithm in
[13] for mixed volume computations rooted from algorithms in graph theory, making it
much more fine-grained and scalable. It can be readily adapted to both distributed and
shared memory computing systems. Remarkably, very high speed-ups were achieved
in our numerical results, and we are now able to compute mixed volume of polynomial
systems of very large scale, such as “VortexAC6” [1, 11] system with mixed-volume
27,550,213 and total degree 230 (around 1 billion).

In section 2 we shall outline the basic procedures for serial mixed volume compu-
tation, and a parallel reformulation for the algorithm is proposed in section 3. We then
present our detailed algorithms for different parallel computation architectures as well
as the numerical results in section 4.

2. THE MIXED CELL COMPUTATION

For each j = 1, . . . , n, let Sj be a finite subset of Nn
0 , and ωj : Sj → R be a

function with generically chosen images, called a generic lifting on Sj . Write

Ŝj = {â = (a, ωj(a))|a ∈ Sj}.
A collection of pairs ({a1, a

′
1}, . . . , {an, a′

n}) where {a1, a
′
1}⊆S1, . . . , {an, a′

n}
⊆ Sn is called a mixed cell if there exists α̂ = (α, 1) ∈ R

n+1 such that for each
j = 1, . . . , n

〈âj, α̂〉 = 〈â′
j, α̂〉 < 〈â, α̂〉 for all â ∈ Ŝj\{âj, â

′
j}.
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Here 〈 , 〉 stands for the usual inner product in the Euclidean space. The volume
of a mixed cell ({a1, a

′
1}, . . . , {an, a′

n}) is defined to be the volume of the convex
hull of the Minkowski sum

{a1, a
′
1}+ {a2, a

′
2}+ · · ·+ {an, a′

n} ,

namely, the volume of mixed cell ({a1, a
′
1}, . . . , {an, a′

n}) is |det(a1 − a′
1, a2 −

a′
2, . . . , an − a′

n)|. It is known [12] that the mixed volume of S = (S1, . . . , Sn)
equals the sum of volumes of all such mixed cells, i.e.,

M(S) =
∑
α

∣∣det(a′
1 − a1, . . . , a

′
n − an)

∣∣

where the summation runs through all the possible mixed cells. Thus the mixed volume
computation is essentially a direct consequence if all those mixed cells can be found
first. On the other hand, those mixed cells play a crucially important role in finding
isolated zeros of polynomial systems numerically by the polyhedral homotopy [14,
15, 16]. They provide the starting points of the homotopy paths. We shall therefore
concentrate ourselves in the computation of those mixed cells.

To find all the mixed cells induced by a given generic lifting ω = (ω1, . . . , ωn) on
S = (S1, . . . , Sn), we first construct the “Relation Tables” T (i, j) for 1 ≤ i ≤ j ≤ n
which display the relationship between elements of Ŝi and Ŝj in the following sense:

Given elements â
(i)
l ∈ Ŝi and â

(j)
m ∈ Ŝj does there exist an α̂ = (α, 1) ∈ Rn+1

such that

(1) 〈â(i)
l , α̂〉 ≤ 〈â(i), α̂〉 for all a(i) ∈ Si

and
〈â(j)

m , α̂〉 ≤ 〈â(j), α̂〉 for all a(j) ∈ Sj ?

Here, when i = j, then l and m must of course be different. Denote the entry
on Table T (i, j) at the intersection of the row containing â

(i)
l and the column con-

taining â
(j)
m by [â(i)

l , â
(j)
m ] and set [â(i)

l , â
(j)
m ] = 1 when the answer of Problem (1) is

positive, [â(i)
l , â

(j)
m ] = 0 otherwise. An efficient algorithm to construct such tables was

given in [9].
For 1 ≤ i ≤ n, a pair ê = {â, â′} ⊂ Ŝi is called a lower edge of Ŝi if [â, â′] = 1

in the relation table T (i, i). Denote the set of all lower edges of Ŝi by L(Ŝi). For k
distinct integers {i1, . . . , ik} ⊂ {1, . . . , n},

(2)
Êk := (êi1, . . . , êik), 1 ≤ k ≤ n, where

êij = {âij , â
′
ij
} ∈ L(Ŝij) j = 1, . . . , k
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Ŝi
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â
(i)
2 [â
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â
(i)
1 [â

(i)
1 , â
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(i)
1 , â
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(i)
1 , â
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(i)
2 , â
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(j)
3 ] · · · [â
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(j)
1 ] [â
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(i)
|si|, â
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Table T(i, j)

is called a level-k subface of Ŝ = (Ŝ1, . . . , Ŝn) (or simply “level-k subface” when no
ambiguities exist) if there exists α̂ = (α, 1) ∈ R

n+1 such that for each j = 1, . . . , k

〈âij , α̂〉 = 〈â′
ij
, α̂〉 ≤ 〈â, α̂〉 ∀a ∈ Sij\{aij , a

′
ij
} .

For a level-k subface Êk = (êi1 , . . . , êik) of Ŝ = (Ŝ1, . . . , Ŝn) with 1 ≤ k <
n and êij = {âij , â

′
ij
} ∈ L(Ŝij) for j = 1, . . . , k, we say lower edge êik+1

=

{âik+1
, â′

ik+1
} ∈ L(Ŝik+1

) for certain ik+1 ∈ {1, 2, . . . , n}\{i1, . . . , ik} can extend
level-k subface Êk if Êk+1 := (êi1 , . . . , êik+1

) can be a level-(k + 1) subface of
Ŝ = (Ŝ1, . . . , Ŝn). We call Êk extensible in this situation and Êk+1 is an extension
of Êk. Furthermore, we say b̂ ∈ Ŝl with l ∈ {1, 2, . . . , n}\{i1, . . . , ik} can extend
Êk if there exists α̂ = (α, 1) ∈ R

n+1 such that for j = 1, . . . , k

(3) 〈âij , α̂〉 = 〈â′
ij , α̂〉 ≤ 〈â, α̂〉 for all a ∈ Sij\{aij , a

′
ij}

and

(4) 〈b̂, α̂〉 ≤ 〈â, α̂〉 for all a ∈ Sl.
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Obviously, if b̂ ∈ Ŝl can not extend Êk, i.e., the system of inequalities in (3) and
(4) is infeasible, then there exists no b′ ∈ Sl\{b} with {b̂, b̂′} ∈ L(Ŝl) which can
extend Êk to become a level-(k + 1) subface.

Notice that any mixed cell ({a1, a
′
1}, . . . , {an, a′

n}) with {a1, a
′
1} ⊆ S1, . . . ,

{an, a′
n} ⊆ Sn gives rise to a level-n subface of Ŝ = (Ŝ1, . . . , Ŝn) and vise versa.

Therefore a main strategy for finding mixed cells is the extension of the subfaces of
Ŝ = (Ŝ1, . . . , Ŝn) from level-1 to level-2, . . . , etc., until level-n subfaces are reached.
So, we pick an appropriate Ŝi1 with i1 ∈ {1, . . . , n} as our point of departure. From
Table T (i1, i1), those pairs {ai1, a′

i1
} ⊆ Si1 with [âi1, â

′
i1
] = 1 are the only possible

level-1 subfaces in Ŝi1. Taking a fixed pair {âi1, â
′
i1
} among them as our level-

1 subface, we search among {Ŝl : l ∈ {1, . . . , n}\{i1}} for the support which has
minimal number of points that can possibly extend the level-1 subface {âi1, â

′
i1
}. This

support will be our Ŝi2. To search for such support, points in each support Ŝl with
l �= i1 which can not extend {âi1, â

′
i1
} would be removed. The techniques for finding

those removable points, which essentially check the feasibility of the inequalities in (3)
and (4) systematically and skillfully, strongly dictate the efficiency of the searching
process. The details can be found in [13, 18].

Suppose the selected Ŝi2 contains the remaining points b̂1, . . . , b̂�. The process of
finding all the pairs among them that can extend {âi1, â

′
i1
} as in [9, 13] is outlined

below:
For each i = 1, . . . , �, consider the One-Point test on b̂i:

(5)

Minimize 〈b̂i, α̂〉 − α0

〈âi1, α̂〉 =
〈
â′

i1
, α̂

〉 ≤ 〈â, α̂〉 ∀a ∈ Si1

α0 ≤ 〈b̂k, α̂〉 ∀k = 1, . . . , �

in the variables α ∈ R
n in α̂ = (α, 1) ∈ R

n+1 and α0 ∈ R. Apparently, when the
optimal value of this LP (Linear Programming) problem is zero, the point b̂i is a
vertex belonging to certain lower edges of Ŝi2 and some of those lower edges may
extend {âi1, â

′
i1
}. Otherwise, b̂i would play no role in any pairs in Ŝi2 that can

extend {âi1, â
′
i1
} and therefore it can be safely removed. We shall use the notation

I(({âi1, â
′
i1
}), b̂i) to denote this One-Point test with ({âi1, â

′
i1
}) being its stem, and

set I(({âi1, â
′
i1
}), b̂i) to be positive when the optimal value of this LP problem is

zero. In short, those b̂i’s with positive I(({âi1, â
′
i1
}), b̂i)’s are points in Ŝi2 that can

extend {âi1, â
′
i1
}.

As explained in detail in [9], an important feature here is that one never needs
to solve those corresponding LP problems for all b̂i’s when the simplex method is
used to solve (5), because the information generated by the simplicial pivoting in the
simplex method already provides answers to many of the LP problems with respect to
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other b̂j’s.
Let b̂j1, . . . , b̂jμ be the remaining points in Ŝi2 on which the above One-Point

tests I(({âi1, â
′
i1
}),

b̂i)’s are positive. We now fix b̂j1 first and for each � = 2, . . . , μ consider the
One-Point test

(6)

Minimize 〈b̂j�
, α̂〉 − α0

〈âi1, α̂〉 =
〈
â′

i1
, α̂

〉 ≤ 〈â, α̂〉 ∀a ∈ Si1

α0 = 〈b̂j1, α̂〉 ≤ 〈b̂jk
, α̂〉 ∀k = 2, . . . , μ

in the variables α ∈ Rn in α̂ = (α, 1) ∈ Rn+1 and α0 ∈ R. It is clear that only zero
optimal value for this LP problem allows the pair {b̂j1, b̂j�

} to extend {âi1, â
′
i1
} and

({âi1, â
′
i1
}, {b̂j1, b̂j�

}) will become a level-2 subface of Ŝ = (Ŝ1, . . . , Ŝn). We use
I(({âi1, â

′
i1
}, {b̂j1}), b̂j�

) to denote this One-Point test with ({âi1, â
′
i1
}, {b̂j1}) being

its stem, and set I(({âi1, â
′
i1
}, {b̂j1}), b̂j�

) to be positive when the optimal value of
this LP problem is zero. In short, positive one point test I(({âi1, â

′
i1
}, {b̂j1}), b̂j�

)
permits {b̂j1 , b̂j�

} to extend {âi1, â
′
i2
}. Again there is no need to solve all those LP

problems with respect to all individual b̂j�
when the simplex method is used to solve

(6) [9]. The same procedure may be repeated on fixing b̂j2, b̂j3, . . . etc., to find all
the possible pairs among {b̂j1, . . . , b̂jμ} that can extend {âi1, â

′
i1
}. Of course, if we

fail to find any pairs in any Ŝl, l ∈ {1, . . . , n}\{i1} that can extend {âi1, â
′
i1
}, then

the whole process will restart on different level-1 subfaces in Ŝi1 .
In general, to extend a level-k subface Êk = (êi1 , . . . , êik) of Ŝ = (Ŝ1, . . . , Ŝn)

with 1 ≤ k < n and êij = {âij , â
′
ij
} ∈ L(Ŝij) for j = 1, . . . , k, we search among

{Ŝl : l ∈ {1, . . . , n}\{i1, . . . , ik}} for the support having minimal number of points
that can possibly extend Êk = (êi1 , . . . , êik). This support will be our Ŝik+1

. (Note
that for different level-k subface Êk = (êi1, . . . , êik) we may find different Ŝik+1

.) Let
ĉ1, . . . , ĉm be the points in Ŝik+1

that can extend Êk = (êi1, . . . , êik). By consecutive
one point tests I((êi1, . . . , êik), ĉi) and I((êi1, . . . , êik), {ĉj1}), ĉj�

), defined similarly
as in (5) and (6) respectively, we find all the pairs in Ŝik+1

that can extend level-k
subface Êk = (êi1, . . . , êik) to become a level-(k + 1) subface.

3. THE PARALLEL REFORMULATION OF MIXED CELL COMPUTATION

At present, the most efficient algorithms for computing mixed volumes, via com-
puting mixed cells, have been implemented in DEMiCs [18] and MixedVol-2.0 [13].
While approaches in those two packages are somewhat different, they follow the same
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theme as described in the last section. As we can see, they are apparently very serial.
For the need of parallel computing, a reformulation of the algorithm is inevitable.

The reformulation we proposed is rooted from algorithms in graph theory. First note
that in the original algorithm for computing mixed cells while some of the One-Point
tests are closely related, most of the other One-Point tests are nearly independent. We
will group together all those One-Point tests having the same stem and call it a task.
Namely, a task is a series of One-Point tests of the form (5) or (6). For example, all
One-Point tests with stem ({âi1, â

′
i1
}, {b̂i2, b̂

′
i2
}) will be grouped together to form a

task, denoted by I(({âi1, â
′
i1
}, {b̂i2, b̂

′
i2
}), ∗). Such tasks will be our smallest units of

computation around which the algorithm is designed.

Fig. 1. Graph of tasks.

Those tasks are interconnected in such a way that they form a directed acyclic
graph or DAG, whose vertices are the tasks and edges between vertices are given by
the natural extension relation between subfaces of the tasks as elaborated in the last
section. In this way, we establish a graph representation of the totality of the One-Point
tests. If we further associate the actual computation of each One-Point test with the
act of visiting its corresponding vertex in such a task graph, then we can equate the
mixed cell computation problem, i.e., the totality of all the One-Point tests, to the graph
traversal problem which can usually be handled by graph traversal algorithms.

We are now guided by the following questions:
1. How does a generic graph traversal algorithm work?
2. How does the graph traversal algorithm map to our mixed cell computation

problem?
3. How can the special structure of the problem allow us to reduce the total amount

of computation?

3.1. Generic graph traversal algorithms

While this class of algorithms is well-known, we shall give a brief discussion
of the algorithm below since it forms the basis of our parallel reformulation. Most
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graph traversal algorithms follow a “discover-explore” procedure with proper book
keeping [24]. The key idea is to gradually explore the graph vertex by vertex through
the connection between them. For a single vertex, such an algorithm is divided into
discover and explore stages: a vertex is first discovered, and then its connections to
other yet unknown vertices are explored. Clearly, each vertex only needs to be visited
once. That is, one only needs to explore a spanning tree of the graph, a subgraph that
contains all the vertices but is a tree in structure, so some mechanism must be used
to prevent a vertex from being visited twice. To keep track of the vertices as they are
being visited, each task is assigned a dynamic marker – its state. A vertex can be in
one of the following three states:

undiscovered The initial status of every vertex. In this state, the existence of the
vertex is completely unknown to us.

discovered The existence of the vertex is known, but its connections to other vertices
are not yet explored.

completely-explored The existence of the vertex is known and its connections to other
vertices have been fully explored.

Obviously, a vertex cannot be completely-explored before it is first discovered, so
in the course of the algorithm, the state of vertices progresses from undiscovered to
discovered to completely-explored. This point of view also reveals the parallelism in
such algorithms: vertices on different branches of the spanning tree can be explored in
parallel, while consecutive vertices on a single branch must be discovered and explored
in order. To start the algorithm, an initial set of vertices are generated by some other
means (bootstrapping). The algorithm then discovers other vertices through their edges.
From these newly discovered vertices the algorithm can discover further more vertices.
This will continue as a self-sustaining process until all connected vertices are visited.
A complete algorithm also needs a data structure to keep track of the discovered but not
yet completely explored vertices (bookkeeping). The detail of this class of algorithms
can be found in standard textbooks such as [24].

3.2. Mapping generic graph traversal algorithms to mixed cell computation prob-
lem

The reformulation of our mixed cell computation algorithm will follow the standard
scheme of graph traversal algorithms stated above with each task corresponds to a vertex
in the graph. The states for vertices map, naturally, to that of tasks:

undiscovered The task in its initial state. In this state, the existence of the task
is completely unknown to us. For example, before any tests are performed,
for any pair {âi1, â

′
i1
} ∈ L(Ŝi1) the task I({âi1, â

′
i1
}, ∗) would be considered

undiscovered, as their existence are completely unknown to us.
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discovered The task after we have first encountered it and before exploring the pos-
sibility of extending its stem. For example, once we have found {âi1, â

′
i1
} in

L(Ŝi1), the task I(({âi1, â
′
i1
}), ∗) is considered to be discovered.

completely-explored The task after we have examined, via One-Point tests, all the pos-
sible ways in which its stem can be extended. For example, after all the One-Point
tests on the task T = I(({âi1, â

′
i1
}), ∗) have been performed and resulting newly

discovered tasks are recorded, we will consider T to be completely-explored. For
all practical purposes, we do not need to visit T again.

As in the generic graph traversal algorithm, the state of tasks progresses from
undiscovered to discovered to completely-explored. For the bookkeeping part, it is
clear that one simply does not need to keep track of tasks with unknown or explored
status. Only the set of discovered tasks, i.e., tasks that are waiting to be explored,
needs to be remembered. So the algorithm shall maintain a dynamic pool of discovered
tasks: the task pool. A priority queue Q will be used as the abstract data structure
for the task pool in which each element has a priority. It supports at least two primary
operations:
enqueue(Q, x) Given an element x with implicitly defined priority, this operation

inserts x into the priority queue Q.
dequeue(Q) As long as Q �= ∅, this operation removes one element x ∈ Q with the

highest priority and returns x as the result to the caller of this operation. This
operation is usually required about constant time, i.e., in O(1).

The relative order of priority of tasks in a task pool determines the order in which
they will be extracted by the dequeue operation. In the context of our algorithm, the
priority determines the order in which tasks will be further explored. Two simplest
choices are giving elements monotonically increasing or decreasing priority. When the
increasing priority rule is used, our algorithm conducts the depth first search or DFS
graph traversal algorithm [6, 24] in the sense that tasks are on a deeper level, i.e.,
those with longer stems will be explored first. On the other hand, when the decreasing
priority is used, the algorithm conducts the behavior of the breadth first search or
BFS graph traversal algorithm [24]. In the preliminary implementation of our parallel
algorithm, we have found that while the monotone decreasing priority assignment tends
to explore parallelism quickly, it often discovers tasks so quickly that the size of the
task pool exceeds the capacity of the main memory of the computer. On the other hand,
the monotone increasing priority assignment is generally helpful in keeping the size of
the task pool relatively small. However, it is very frequently the case that the number of
discovered tasks at a single point of time is less than the number of processors available,
and as a result, some processors would idle. Therefore, a dynamic combination of the
two priority assignment schemes is employed in our algorithm. The priority queue
for the task pool always start with the monotone decreasing priority assignment. The
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algorithm keeps monitoring the size of the task pool, and when the size of the task pool
exceeds a predetermined constant multiple of the number of threads, then the priority
assignment for the priority queue is reversed, i.e., the monotone increasing order is
used instead.

For the bootstrapping part, the relation-table computation produces useful by-
products of the lower edges L(Ŝik) of each support. Once the index i1 of the first
support is determined, we consider tasks with stems in L(Ŝi1) to be discovered.

3.3. The special structures of the mixed cell computation problem

For a large polynomial system where n is relatively big and supports Si, i =
1, . . . , n contain many points, the induced graph can be unmanageably large. However,
one key observation is that unlike the situation for a general graph traversing problem
our graph contains many redundant vertices and there is no need to visit such vertices.
For instance, if we already know the One-Point test I({âi1, â

′
i1
}, {b̂i2}) is negative, it is

clear from the systems of inequalities (5) and (6) that any tasks with ({âi1, â
′
i1
}, {b̂i2})

as part of its stem can be safely ignored, as the corresponding One-Point tests must
also be negative. In the graph-theoretic language, once an One-Point test from a task
is known to be negative, any subtree of the graph rooted from that One-Point test
can be completely ignored, leaving only a small fraction of the tasks to be explored.
Essentially important is to identify those vertices at 2n-depth in the graph, which can
be considered as mixed cells.

Another potential problem for very large systems is the computational cost for keep-
ing track of the set of already discovered tasks could grows quickly. One solution is to
apply extra constraints to the graph, so that it can be reduced to a tree structure. For in-
stance, if we require the existence of the edge between I(({âi}), ∗) and I(({âi, â

′
j}), ∗)

implying i < j, then as shown in Figure 2 the edge from I(({â1, â2}, {b̂2}), ∗) to
I(({â1, â2}, {b̂1, b̂2}), ∗) in Figure 1 disappeared by this requirement. We can see
that the set of tasks together with the now reduced set of edges actually form a tree
structure instead of a more general graph structure. Since a vertex in a tree structure
has at most one incoming edge, this reduced structure frees us from explicitly keeping
track of the already discovered tasks. In our actual experiments, we found that this
technique is generally beneficial for the parallel computation of very large systems.

3.4. The parallel algorithm

Initially, only tasks with stems in L(Ŝi1) are considered to have been discovered.
To completely explore a task, say I(({âi1, â

′
i1
}), ∗), we shall perform One-Point test

I(({âi1, â
′
i1
}), b̂j) for each b̂j ∈ Ŝi2 for the chosen i2 that may lead to still undiscov-

ered tasks, making them discovered. For each One-Point test as in (6) that gives a posi-
tive result, say I(({âi1, â

′
i1
}), b̂j), we considered the new task I(({âi1, â

′
i1
}, {b̂j}), ∗)

as being discovered, and we shall placed this newly discovered task in the task pool to
be explored later. After One-Point test is performed on each b̂j ∈ Ŝi2 , we shall mark
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the original task I({âi1, â
′
i1
}, ∗) as completely-explored.

Fig. 2. Tree of tasks

We continue the algorithm by repeatedly fetch a single already discovered task from
the task pool and explore it by performing a series of One-Point tests. This fetch-and-
explore procedure continues until the task pool is empty and there is no tasks that are
currently being explored. At this point all the mixed cells should have been obtained,
and the algorithm terminates. This part of the algorithm is described by the pseudo-code
listed in Algorithm 1, in which eliminate(L(Ŝl)) refers to the process of eliminating
edges using the techniques stated in [13, 18]. It will be the basic building block
with which we construct all of our parallel algorithms. When multiple execution units
(called threads in shared-memory model or processes in distributed-memory model) run
simultaneously, each simply executes such a fetch-and-explore procedure repeatedly and
thus they can all execute independently from one another as long as one can maintain
the pool of discovered tasks in a concurrent data structure.

4. MIXED CELL COMPUTATION IN PARALLEL

4.1. An overview of the parallel computing architectures

Different parallel computing systems nowadays form a wide spectrum of archi-
tectures. On one end of the spectrum, one can find super-scalar processors in which
parallelism is exploited at an instruction level. On the other extreme side, there are
distributed computing environments consisting of independent computers. It is virtu-
ally impossible to cater to the specific challenges of every possible architecture, nor
is it likely that we can pay close attention to every characteristic of an architecture.
Nonetheless two characteristics will have great influence on our design decisions. First,
the memory organization decides how processing units can communicate with one an-
other. Memory can be shared, in which case processing units can access the memory
of one another, and writing as well as reading of the shared memory would be the main
means of communication among them. When memory is not shared, each processing
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unit can only access its own local memory, and some other means of communication,
such as message passing, must be used to communicate with other processing units.
Second, the coupling among processing units will influence the way we organize dif-
ferent units. The word “coupling”, in this context, refers to the degree to which the
processing units can interact with one another in a reliable way. On one hand, if the
channel of communications among processing units is direct, fast, and reliable, we say
they are tightly coupled. On the other hand, when the channel is indirect, slow or
unreliable, we say they are loosely coupled.

Algorithm 1. ParallelExtend(Q)
Input: A priority queue Q of tasks
Output: A set of mixed cells of S = (S1, . . . , Sn)

M ← ∅ # the set M will contain the mixed cells
while Q �= ∅ do

Êk = (ei1 , . . . , eik)← dequeue(Q) # where êij ⊂ Ŝij

Rk ← {1, . . . , n}\{i1, . . . , ik} # indices of the remaining supports
for all l ∈ Rk do

Ll ← eliminate(L(Ŝl)) # let Ll be the remaining edges of L(Ŝl)
rl ← |Ll| # the number of remaining edges

end for
mk+1 ← min{rl}l∈Rk # find the minimum number of remaining edges
if mk+1 > 0 then

ik+1 ← min{l | rl = mk+1} # pick next support to be one of that size
for all êik+1 ∈ Lik+1 do

if I(Êk, êik+1) is positive then
if k + 1 = n then

M ←M ∪ {(Êk, êik+1)} # obtained a mixed cell
else

enqueue (Q, (Êk, êik+1)) # obtained a mixed cell
end if
end if

end for
end if

end while
return M # return the mixed cells

Based on these two criteria, we restrict our attention to three major classes of parallel
architectures, and tailor our algorithms to these architectures. First, we deal with the
shared-memory systems, the type of systems in which some form of shared memory is
accessible to all processing units and the processors are tightly coupled in the sense
that the channels of communication between them are direct, fast and very reliable. A
typical example is the traditional SMP (symmetric multi-processor) architecture. We
then face the distributed-memory single systems. They are computer systems in which
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memory are not shared among processing units, but processing units are connected by
slightly slower but still relatively reliable networks so that, to a certain extend, they
still form a single computer system. High performance computer clusters are examples
of this class. Finally, we experiment on distributed environments in which memory are
not shared among processing units, much like the previous class. However, processing
units in such an environment are very loosely coupled, in the sense that the connection
between them are very slow and even unreliable, and, more importantly, processing
units may enter and exit the environment freely. For instance, a processing unit can
become connected and ready to perform tasks in the middle of a computation process, or
a unit may stop calculation or even fail suddenly, without any warning. To program in
such an environment, we must be aware of the loose-coupling among processing units.
The differences among the three major classes are summarized in the table below.

Class Shared-Memory Distributed-
Memory
single system

Distributed environment

Memory organization shared not shared not shared

Coupling tight loose very loose

These three classes are not intended to be all-inclusive nor mutually exclusive.
Stream processors (used to construct GPUs), for example, are not included in the
above classes. We are, however, excited to see the new trend of using GPUs in general
computation, and we are looking forward to facing the challenge as they become more
mature. That being said, majority of the parallel computers one may encounter belong to
one of these classes. Although the tight coupling between different tasks seem to suggest
that our parallel formulation is designed for shared-memory systems, in the following
subsections we shall show that with careful implementation with respect to different
hardware architectures, our algorithm can actually achieve remarkable performance on
a wide range of architectures.

4.2. Shared-Memory systems

Typical examples of shared-memory systems include the symmetric multi-processing
(SMP), the multi-core processors, and NUMA architectures. In an SMP architecture,
all processors share a single connection to a common memory and access it at similar
rates. Chip multiprocessors, also known as multi-core processors, involves more than
one processor physically placed on a single chip package and often share some compo-
nents. Multi-core processors can be considered as an extreme form of tightly-coupled
SMP. Today, SMP and the multi-core processor architectures are very common, partly
because they are efficient and easy to build. However they are not scalable to a large
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number of processing units, as the common connection between the shared memory
and all the processors/cores may become a bottleneck. Non-Uniform Memory Access,
or NUMA, architectures, are designed to overcome this very problem. The name,
NUMA, refers to the fact that a processor can access memory residing on its own node
much faster than it can access those residing on other nodes. Logically, programming
a NUMA is no different than programming an SMP system. However, care must be
taken when planning the data layout if one wishes to obtain the best performance on a
NUMA system.

Despite the difference in organization, all shared-memory architectures allow fast
and direct communication between processing units via writing and reading of the
shared memory. As a result, in all shared-memory systems, a threading model is used
in designing our parallel algorithm. In such a model, a thread is the smallest unit
of execution, and multiple threads, each runs on an independent processing unit, can
cooperate via the shared memory. With the shared memory efficiently accessible by
all threads, in our algorithm a single and global task pool is placed in the shared
memory and is used by all threads. Each thread simply executes Algorithm 1 stated in
the last section. We shall show the parallel performance of our algorithm on typical
multi-core and NUMA architectures. The algorithm is implemented using the standard
Pthreads library. We have also used a more modern but less portable library, the Intel
TBB (Thread Building Blocks, an open source threading library originally developed
by Intel [23]), wherever it is available.

One of the biggest challenges one must face in shared-memory systems, which
does not exist in the distributed-memory systems, is the need to handle race conditions
caused by multiple threads accessing same memory locations at the same time. The
task pool, for example, should, in principle, allow concurrent access from multiple
threads, but such an access pattern will almost certainly cause race conditions. Thus
some special mechanism must be in place to shield the task pool against such problems.
In our Pthreads-based implementation, the standard mutex (or futex in Linux) is used to
safeguard the shared task pool. But when Intel TBB is available on our target platform,
we make use of the more efficient concurrent data structures provided by TBB itself.
Not only does it free us from implementing our own concurrent task pool, it is also
generally more efficient. So in the testings listed below, the TBB-based version is used.

4.2.1. Mixed volume computation on multi-core architecture

Our algorithm is applied in finding mixed volumes of a group of standard benchmark
polynomial systems for numerical testing. Using TBB, nearly n-fold linear speedups
scalable up to 12 processor cores have been achieved as shown in the table below. From
the uniform speedups with respect to different number of processor cores, it is expected
that the same range of speedups can be reached with a large amount of processor cores.

Here Tserial represents the absolute amount of time consumed to compute the mixed
volumes using only one processor core, whereas the parallel speedup ratio using p
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processor cores is given by the ratio Tserial/Tp in which Tp is the amount of time
consumed using p threads.

4.2.2. Mixed volume computation on NUMA architectures

Fig. 3. An example of a NUMA node structure.

As a test problem, we have computed the mixed volume of the system known as
the “Sonic8” (28 equations in 28 variables with total degree approximately 5.2×1010)
[13] on a NUMA system with 8 identical nodes configured as shown in Figure 3,
in which each node has 4 independent processor cores and certain amount of local
memory. Logically, the local memory of all nodes are accessible by all the nodes and
hence form a global memory in which we can store the task pool and all other data.
However from the point of view of efficiency, while processor cores in one node can
access the memory on another node, the access time is roughly proportional to the
length of the path between the two nodes in Figure 3. As a result, the best speedup
ratio is achieved when one uses nodes that are closer together in Figure 3. With the
best node placement, we were able to achieve close to n-fold linear speedup up to 16
processors. Beyond 16 processors, the speedup ratio drops slightly but maintains a
relatively high efficiency. The speedup ratio as a function of the number of processors
used is shown in Figure 4.
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Fig. 4. Average parallel speedup on a NUMA architecture computer for the system
“sonic-8”.

4.3. Distributed-Memory single systems

In distributed-memory single systems, a master-worker model is used for our algo-
rithm. In such models, the master populates the initial task pool, and then sends them
to the workers to be further explored. Each worker, equipped with its own task pool for
the newly discovered tasks by itself, continuously executes Algorithm 1 and requests
more tasks from the master whenever it exhausted its own task pool. The overall al-
gorithm for each worker is given by Algorithm 2 in which “send” and “receive” refer
to sending to and receiving from the master.

The Message Passing Interface, or MPI, is an API (application programming in-
terface) specification that allows computers to communicate with one another [21].
Even though it is not sanctioned by any major standards body, MPI has became a de
facto standard for communication among processes of a parallel program running on
a distributed memory system such as a computer cluster [25]. Currently, Algorithm
2 is implemented using MPI. The speedup effect using multiple nodes in a cluster on
system “cyclic-15” [3] is shown in Figure 5. It is expected that the speedup ratio
cannot get close to those achieved on a multi-core system, since MPI (at least MPI-1)
only uses distributed memory model [22], and our mixed cell computation problem,
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not a pleasantly parallel problem, induces significant communication overhead between
nodes. However, using MPI is possible to scale to more processors than using multi-
core architecture. In particular, up to 96 processor cores can be used to compute mixed
volume of the “cyclic15” [3] system with very good speedup ratio. With all 96 pro-
cessors, the problem that will take a serial program almost 9 hours to compute can be
finished within 10 minutes! It is expected that with larger and more advanced computer
clusters, we can scale it to much larger number of processors.

Fig. 5. Parallel speedup on clusters using MPI for the system “cyclic-15”.

4.4. Distributed environment

As one tries to solve larger and more challenging systems of polynomial equations,
the computational power needed may very well exceed that of a single computer or
cluster. Distributed computing technology has allowed a very loosely coupled set of
computers, which may spread around the world, connected to each other via slower
and less reliable networks, such as the Internet, to collaborate with each other and act
as a single supercomputer.

To this end, an experimental version of our mixed volume computation algorithm
was implemented using a client/server model based on TCP/IP protocol [26]. This
implementation consists of a client side program and a server side program. One server
is running at any time, and it is responsible for computing the relation table and dividing
the problem into groups of tasks using the algorithm described above. To ensure the
problem is being divided into enough number of groups of tasks to exploit the large
scale parallelism allowed by the distributed environment, the server will perform the
extension algorithm similar to the serial version until the task pool reaches a prescribed
size minQ, and then the server will wait for client requests and sends the groups to
clients via the network. Multiple client programs can run simultaneously. A client can
run on any computer that is connected to the network. Each client will continuously
request tasks from the server via the network until the server can no longer reply with
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new tasks. For each task received, the client performs the extension algorithm described
above and then sends the result back to the server. The client side algorithm is listed
in Algorithm 3.

Comparing to the version for distributed-memory single systems, the main chal-
lenge here is the connection between a client and the server being generally slow and
unreliable. So different from their counter parts in the distributed-memory single sys-
tems, the client must take into consideration the possibility of failing to connect to the
server, while the server must take into consideration the possibility that the clients may
stop computation before returning the results. Moreover, both sides need to consider
the possibility of messages being corrupted. In particular, the server has to verify the
correctness upon receiving the computation results from a client program: The server
first performs standard check-sum procedures [5] on the results it received, then the
results are checked using the systems of inequalities (3) and (4) which define subfaces.
If the result fails either one of the two tests, the corresponding task will be sent out
for recomputation. The same avenue applies if the server fails to hear back from the
client at all. To implement this, the server is separated into two parts, the main part is
responsible for performing the first stage of extension algorithm to generate the initial
pool of tasks as well as sending them to the clients for further exploration. The other
part, the receiving part, is responsible for listening for computation results from the
clients. To make sure every task is explored, the server keeps a time-stamp table T as
well as a waiting list W to keep track of the waiting time of each task that has been
sent out for computation. In particular, upon being sent to a client, a task w is moved
to the waiting list W , and the time-stamp is stored in the corresponding slot T [w] of
the table T , and upon receiving its result from the client, it is then removed from both
W and T . The main part of the server continuously scans the time-stamp table T for
tasks that has been on the waiting list for too long, and such tasks are moved back
to the task pool Q to be recomputated. The two parts of the server-side algorithm is
listed in Algorithms 4 and 5.
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With this implementation, the mixed volume of a very large system VortexAC6
(shown in Equation (7)) with 30 equations of 30 variables (total degree: 230) can be
computed by using 145 individual processors from multiple clusters and workstations.

(7)

⎧⎪⎨
⎪⎩

6∑
k=1

yik (xjk − xik − xij) + yjk (xik − xjk − xij) = 0

1− xij − yij · xij = 0
for 1 ≤ i < j ≤ 6

The total CPU hours involved exceeds eight months, but with the distributed model,
we marvelously complete the computation within 2 days. It is worth noting that the
number of processors used in this case is actually only limited to the hardware we
have at our disposal. It appears that the same implementation can solve the same
problem using 5,000 to 10,000 processors with similar efficiency. We must, however,
emphasize that this ad hoc solution is only meant to be a proof-of-concept. To build a
software package that is useful for general use, a more robust solution is necessary. The
field of distributed computing is well-studied with active and exciting developments.
Many mature toolkits are already available for helping programmers to build distributed
computing software. We shall investigate the possibility of building robust distributed
mixed cell computation package using toolkits such as Condor [27], Condor-G [8], and
BOINC [2].
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