
Journal of Symbolic Computation 79 (2017) 516–534
Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Mixed cell computation in Hom4PS-3

Tianran Chen a,1, Tsung-Lin Lee b,2, Tien-Yien Li a,1,3

a Department of Mathematics, Michigan State University, East Lansing, MI, USA
b Department of Applied Mathematics, National Sun Yat-sen University, Taiwan ROC

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2015
Accepted 19 August 2015
Available online 16 July 2016

Keywords:
Mixed volume
Mixed cells
Polyhedral homotopy
Polynomial system
Parallel computing

This article presents recent efforts in improving the efficiency and
scalability of the mixed cell computation step in the context of the
Polyhedral Homotopy method.
Solving systems of polynomial equations is an important problem
in applied mathematics. The Polyhedral Homotopy method is an
important numerical method for this task. In this method, a nec-
essary preprocessing step, known as the “mixed cell computation”
problem has been the main bottleneck in the parallel efficiency and
scalability. This article presents recent remarkable improvements
in the parallel scalability of the algorithm that are applicable to a
wide range of hardware architectures including multi-core systems,
NUMA systems, computer clusters, and GPUs devices.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of solving systems of polynomial equations, or polynomial systems, has been, and
will continue to be, a subject of great importance in both pure and applied mathematics. The need
to solve polynomial systems arises naturally and frequently in various fields of science and engineer-
ing as documented in Allgower and Georg (2003), Morgan (2009), Sommese and Wampler (2005). In
1990s, a considerable research effort in Europe had been directed to the problem of solving poly-
nomial systems in two consecutive major projects, PoSSo (Polynomial System Solving) and FRISCO

E-mail addresses: chentia1@msu.edu (T. Chen), leetsung@math.nsysu.edu.tw (T.-L. Lee), li@math.msu.edu (T.-Y. Li).
1 Research supported in part by NSF under Grant DMS 11-15587.
2 Research supported in part by MOST under Grant 103-2115-M-110-002.
3 Research supported in part by NSFC under Grant 11171052.
http://dx.doi.org/10.1016/j.jsc.2016.07.017
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.07.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:chentia1@msu.edu
mailto:leetsung@math.nsysu.edu.tw
mailto:li@math.msu.edu
http://dx.doi.org/10.1016/j.jsc.2016.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2016.07.017&domain=pdf

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 517
(FRamework for Integrated Symbolic and numerical COmputation), supported by the European Com-
mission. Those research projects focused on the development of the well-established Gröbner basis
methods within the framework of computer algebra. Their reliance on symbolic manipulation lim-
its those methods to relatively small problems. In 1977, Garcia and Zangwill (1979) and Drexler
(1977) independently discovered that the homotopy continuation could be used to find the full set of
isolated solutions to a polynomial system numerically. In the ensuing years, the method saw exten-
sive development and sparked the creation of the exciting new field of Numerical Algebraic Geometry
(Sommese and Wampler, 1996). It has become one of the most reliable and efficient class of nu-
merical methods for finding the full set of isolated solutions to a general polynomial system. There
are many software implementing this method, including Bertini (Bates et al., 2013), Hom4PS-2.0
(Lee et al., 2008), HOMPACK (Morgan et al., 1989; Watson et al., 1987), NAG4M2 (Leykin, 2009;
Leykin, 2011), PHCpack (Verschelde, 1999), etc. See Allgower and Georg (2003), Attardi and Traverso
(1995), Li (2003), Morgan (2009), Sommese and Wampler (2005) for basic references.

One important family of homotopy for solving polynomial systems is the polyhedral homotopy
method initiated by B. Huber and B. Sturmfels (1995) which has a distinctive advantage in solving
sparse polynomial systems. The method has been successfully implemented in the software pack-
ages PHCpack (Verschelde, 1999) developed by J. Verschelde at University of Illinois at Chicago Circle,
and Hom4PS-2.0 (Lee et al., 2008) developed by the authors, etc. The efficiency and reliability in the
applications of Hom4PS-2.0 in many problems in mathematics, science, and engineering have been
documented in Bozóki et al. (2015), Lee et al. (2008), Lee and Santoprete (2009), Li (2003), Li and Tsai
(2009), Mehta (2009), Mehta (2011a), Mehta (2011b), Mehta et al. (2012), Mehta et al. (2014), Mehta
et al. (2009). Based on Hom4PS-2.0, we have built a new and further improved numerical solver for
polynomial systems — Hom4PS-3 — around the same core mathematical algorithms.

In applications from science and engineering, there is no shortage in the demand of solving larger
and larger polynomial systems. Homotopy continuation methods, in general, are particularly suited to
handle these large polynomial systems due to their pleasantly parallel nature: each isolated solution
is computed independently of the others. However, in the polyhedral homotopy method which plays
the main role in our Hom4PS-3 package, an important preprocessing step, the “enumeration of mixed
cells” (Chen et al., 2014; Emiris and Canny, 1995; Gao and Li, 2000; Gao and Li, 2003; Gao et al., 1999;
Gao et al., 2005; Huber and Sturmfels, 1995; Lee and Li, 2011; Li and Li, 2001; Mizutani and Takeda,
2008; Mizutani et al., 2007; Takeda et al., 2000; Verschelde et al., 1996) (which will be discussed
in §3) is a major bottleneck in terms of its scalability in parallel computation and can severely limit
its ability in handling large polynomial systems. A fully parallel algorithm for this step based on a
graph-theoretic formulation has been attempted by the authors in Chen et al. (2014) to solve this
problem. Encouraged by the results, Hom4PS-3 integrates this parallel algorithm and consolidates
many important improvements developed since Chen et al. (2014). Of particular importance are the
improvements in the parallel scalability that enables the computation of problems of much larger
scale. In this article, we outline the underlying parallel algorithm and describe the technical details of
the recent improvements. Impressive results of a few experimental features are also presented with
the hope to inspire future investigations.

The rest of the article is structured as follows: First, to motivate the rest of the discussions, we
briefly review the polyhedral homotopy continuation method in §2. The mathematical description of
mixed cell enumeration process is given in §3. A fully parallel algorithm based on a graph-theoretic
formulation is outlined in §4. Technical but critical aspects of adapting the parallel algorithm to dif-
ferent computing hardware architectures are discussed in §4.1, §4.2, §4.3 and §4.4.

2. Polyhedral homotopy

In the middle of 1990s, a major computational advancement has emerged in solving polyno-
mial systems by the homotopy continuation method. Taking advantage of the Bernstein’s theorem
(Bernshtein, 1975), the polyhedral homotopy method was introduced by B. Huber and B. Sturmfels
(1995). The polyhedral homotopy method is designed to find all complex isolated zeros of a “square”
polynomial system of the form

518 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
P (x1, . . . , xn) = P (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1(x) =
∑
a∈S1

c1,a xa

...

pn(x) =
∑
a∈Sn

cn,a xa

(1)

where x = (x1, . . . , xn), a = (a1, . . . , an)� ∈ Nn
0 = (N ∪ {0})n , and xa = xa1

1 · · · xan
n . Here S j is the sup-

port of p j : a finite subset of Nn
0 defined by the exponent vectors of the monomials appearing in the

polynomial p j . For fixed supports S1, . . . , Sn , it is a basic fact in algebraic geometry that for generic
choices of the complex coefficients c j,a ∈C∗ = C \ {0} the number of isolated solutions of the system
P (x) = 0 in (C∗)n is a constant. The word “generic” here can be understood as the existence of an
open and dense subset of coefficients among all possible complex coefficients for which the previous
statement holds. For instance, if the coefficients are chosen at random (using any continuous proba-
bility density), then the statement holds with probability one. Moreover this fixed number of isolated
solutions also serves as an upper bound on the number of isolated solutions P (x) = 0 can have in
(C∗)n among all choices of coefficients.

In Bernshtein (1975), this number (sometimes called the BKK bound) was shown to be a particular
mixed volume (Minkowski, 1911): For convex polytopes Q1, . . . , Qk ⊂Rk , let λ1Q1, . . . , λkQk represent
their scaled version, by factors of positive λ1, . . . , λk respectively. The Minkowski sum λ1Q1 + · · · +
λkQk is also a convex polytope. It can be shown that the volume Volk(λ1Q1 + · · · + λkQk) in Rk is
a homogeneous polynomial in λ1, . . . , λk when λi ’s are nonnegative. The mixed volume, denoted by
MVol(Q1, . . . , Qk), is defined to be the coefficient of λ1 × λ2 × · · · × λk in this polynomial.

Theorem 1 (Bernshtein (1975)). The number of isolated solutions of P (x) = 0 in (C∗)n is less than or equal to
the mixed volume of the convex hull of the supports of P (x), that is,

MVol(conv S1, . . . , conv Sn).

Moreover, this bound is exact for generic choices of the coefficients of P (x).

Based on an alternative proof of the Bernshtein’s Theorem from a combinatorial point of view,
B. Huber and B. Sturmfels (1995) constructed a nonlinear “polyhedral homotopy” for solving polyno-
mial systems which we shall outline below.

First, the focus is restricted to solving a polynomial system P (x) = 0 as in (1) with “generic”
(nonzero) complex coefficients c j,a ∈ C∗ . In this case, to solve P (x) = 0 in (1), consider, with a new
variable t , the homotopy

H(x1, . . . , xn, t) = H(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

h1(x, t) = ∑
a∈S1

c1,a xatω1(a)

...

hn(x, t) = ∑
a∈Sn

cn,a xatωn(a)

(2)

with “lifting” functions ω1, . . . , ωn , where each ωk : Sk → Q has randomly chosen image. Note that
when t = 1, H(x, 1) = P (x) is exactly the target system. By a standard application of Generalized
Sard’s Theorem (Abraham and Robbin, 1967) and the Implicit Function Theorem, the zero set of
H(x, t) defines paths (known as homotopy paths) emanating from solutions of P (x) = H(x, 1) = 0
and continue toward the solutions at t = 0 , and all these homotopy paths are smooth with no bi-
furcations. (The genericity of the coefficients and the randomness of the images of the ωi are critical
here.) Moreover, since for any fixed t value, H(x, t), as a polynomial system in x only, has the same
supports S1, . . . , Sn , the number of its roots agree with the BKK bound in Theorem 1. Therefore, the
number of homotopy paths defined by (2) is precisely the BKK bound of P (x).

However, at t = 0, the solutions of the starting system H(x, 0) = 0 cannot be identified since the
terms of each hi either vanish or blow up. This obstacle can be surmounted by the following device.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 519
For a ∈ Sk , write â = (a, ωk(a)). In Huber and Sturmfels (1995), it was shown that there ex-
ists at least one α̂ = (α, 1) ∈ Rn+1 with α = (α1, . . . , αn) and an n-tuples of pairs {a1, a′

1} ⊂
S1, . . . , {an, a′

n} ⊂ Sn such that for each k = 1, . . . , n

〈âk, α̂〉 = 〈â′
k, α̂〉 < 〈â, α̂〉 for all a ∈ Sk \ {ak,a′

k} (3)

and

κα := ∣∣det
[

a1 − a′
1 . . . an − a′

n

]∣∣ > 0.

Here 〈·, ·〉 stands for the standard inner product in Euclidean space. While the possible α and κα

clearly depends on the liftings ω = (ω1, . . . , ωn), if T is the collection of all such distinct α ’s, then∑
α∈T

κα

is independent of the choice of the lifting functions ω1, . . . , ωk . In fact, this number agrees with the
number of isolated solutions of the system P (x) = 0 in (C∗)n (counting multiplicities) known as the
BKK bound mentioned before. The elements in the collection T along with their corresponding set of
pairs {a1, a′

1} ⊂ S1, . . . , {an, a′
n} ⊂ Sn are known as the mixed cells. When there is no ambiguity, we

will simply use the vector α ∈ T to represent the corresponding mixed cell. These mixed cells play a
crucial role in the construction of polyhedral homotopy. Their computation will be discussed in §3.

For a fixed mixed cell, that is, an α = (α1, . . . , αn) in T along with its associated set of pairs
{a1, a′

1} ⊂ S1, . . . , {an, a′
n} ⊂ Sn , let

βi := 〈âi, α̂〉 = 〈â′
i, α̂〉 (4)

for i = 1, . . . , n. Then by (3), for every i = 1, . . . , n,

βi < 〈â, α̂〉 for all a ∈ Si \ {ai,a′
i}. (5)

By the change of variables x = tα · y, that is, for y = (y1, . . . , yn)⎧⎪⎨
⎪⎩

x1 = tα1 y1
...

...

xn = tαn yn,

(6)

we have, for a = (a1, . . . , an) ∈ Sk and â = (a, ωk(a)),

xatωk(a) = xa1
1 . . . xan

n tωk(a)

= (tα1 y1)
a1 · · · (tαn yn)

an tωk(a)

= ya1
1 · · · yan

n ta1α1+···+anαn+ωk(a)

= ya t〈(a,ωk(a)),(α,1)〉

= ya t〈â,α̂〉

with α̂ = (α, 1). Substituting the result into H(x, t) in (2), it follows that

H̄α(y, t) := H(tα · y, t) =

⎧⎪⎪⎨
⎪⎪⎩

h̄α
1 (y, t) := h1(tα · y, t) = ∑

a∈S1
c1,a ya t〈â,α̂〉

...

h̄α
n (y, t) := hn(tα · y, t) = ∑

a∈Sn
cn,a ya t〈â,α̂〉.

Though the above expression may contain positive or negative powers of t , the minimum exponents
of t in each h̄α

i is given by βi (5). Therefore, by constructing

520 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Hα(y, t) :=

⎧⎪⎪⎨
⎪⎪⎩

hα
1 (y, t) := t−β1 h̄α

1 (y, t) = ∑
a∈S1

c1,a ya t〈â,α̂〉−β1

...

hα
n (y, t) := t−βn h̄α

n (y, t) = ∑
a∈Sn

cn,a ya t〈â,α̂〉−βn ,

(7)

each component hα
i of Hα has exactly two terms having no powers of t corresponding to ai and a′

i
respectively while all other terms have positive powers of t . That is,

Hα(y, t) :=

⎧⎪⎪⎨
⎪⎪⎩

c1,a1 ya1 + c1,a′
1
ya′

1 + ∑
a∈S1\{a1,a′

1} c1,a ya t〈â,α̂〉−β1

...

cn,a1 yan + cn,a′
1
ya′

n + ∑
a∈Sn\{an,a′

n} cn,a ya t〈â,α̂〉−βn .

This Hα(y, t) is known as the polyhedral homotopy induced by the mixed cell α. Note that the desired
property that Hα(y, 1) ≡ P (y) still holds, and hence Hα still represents a deformation of the target
system P (x) = 0. However, unlike the original H in (2) which becomes meaningless at t = 0, here,
when t = 0, Hα(y, 0) = 0 is the binomial system of equations⎧⎪⎪⎨

⎪⎪⎩
c1,a1 ya1 + c1,a′

1
ya′

1 = 0
...

...

cn,an yan + cn,a′
n
ya′

n = 0

. (8)

It is known that the solutions of this binomial systems in (C∗)n are all isolated and nonsingular. The
total number of these solutions is exactly κα = | det[a1 − a′

1 · · · an − a′
n]| which is an integer by the

Leibniz’s determinant formula. Moreover, these solutions can be located accurately and efficiently via
numerical methods (Chen and Li, 2014; Kahle, 2010; Li, 2003).

The nonsingular solutions obtained by solving (8) are then used as the starting points for following
the homotopy paths y(t) defined by Hα(y, t) = 0, for which Hα(y(t), t) = 0 from t = 0 to t = 1. Note
that the change of variables x = tα · y in (6) yields x ≡ y at t = 1. Therefore, each end point y(1) at
t = 1 of the homotopy path y(t) of Hα(y, t) = 0 is also an end point x(1) of the homotopy path x(t)
defined by H(x, t) = 0 given in (2) which, in turn, provides a solution of the target system P (x) = 0
in (1). Altogether it yields κα of the isolated solutions of P (x) = 0 in (C∗)n along this route. In Huber
and Sturmfels (1995), it was shown that as one follows the homotopy paths defined by Hα(y, t) = 0
for all individual α ∈ T , one obtains all (isolated) solutions of P (x) = 0 in (C∗)n , justifying, indeed, the
BKK bound agrees with

∑
α∈T κα . We summarize the above derivation into the following theorem.

Theorem 2 (Polyhedral homotopy (Huber and Sturmfels, 1995)). Assume the target system P (x) = 0 has
generic coefficients. For each mixed cell α ∈ T , along with its corresponding pairs {a1, a′

1} ⊂ S1, . . . ,
{an, a′

n} ⊂ Sn, let βi = 〈âi, α̂〉 = 〈â′
i, α̂〉. Then the induced homotopy

Hα(y, t) =

⎧⎪⎪⎨
⎪⎪⎩

t−β1 h1(tαy, t) = ∑
a∈S1

c1,a ya t〈â,α̂〉−β1

...

t−βn hn(tαy, t) = ∑
a∈Sn

cn,a ya t〈â,α̂〉−βn

defines smooth homotopy paths with no bifurcations in (C∗)n × [0, 1], and the number of paths is exactly

κα := ∣∣det
[

a1 − a′
1 . . . an − a′

n

]∣∣ . (9)

The total number of paths defined by all Hα for α ∈ T is∑
α∈T

κα = MVol(conv S1, . . . , conv Sn) (10)

agreeing with the number of isolated solutions of P (x) = 0 in (C∗)n. Moreover, every such isolated solution
lies at the end of a unique path defined by a Hα = 0 for some α ∈ T .

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 521
Remark 1. Recall that for polynomial systems having generic coefficients, the BKK bound (Theorem 1)
is exact. For systems with specific (i.e. not generic in the above sense) coefficients, the number of
isolated solutions in (C∗)n may be less than the BKK bound and hence less than the number of paths
defined by (2).

Remark 2. Though the above procedure only targets the isolated solutions in (C∗)n of a polynomial
system P (x) = 0 with generic coefficients, these limitations can be resolved by the following modifi-
cations provided in Li et al. (1989), Li and Wang (1996), Morgan and Sommese (1989). Leaving aside
the technical statements, it is sufficient to augment the polyhedral homotopy into

H(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1(x, t) =
∑
a∈S1

[(1 − t)c∗
1,a + tc1,a]xatω1(a) + (1 − t)b∗

1

...

hn(x, t) =
∑
a∈Sn

[(1 − t)c∗
n,a + tcn,a]xatωn(a) + (1 − t)b∗

n

for a generic set {c∗
i,a}i=1,...,n, a∈Si of complex coefficients and complex constants b∗

1, . . . , b∗
n . It has been

shown that this homotopy defines a finite number of smooth homotopy paths with no bifurcations
and each isolated solution of P (x) = 0 in Cn (which may be outside (C∗)n) lies at the end of one such
path. That is, with this augmented homotopy, all complex isolated solutions (not necessarily in (C∗)n)
of a polynomial system (not necessarily having generic coefficients) can be found.

Since its inception, this general method has achieved a great success. It is widely considered to
be one of the most efficient, robust and reliable numerical methods for solving sparse polynomial
systems. There is a rich and growing body of works devoted to different aspects in the efficient
and stable implementation of the polyhedral homotopy method and homotopy methods in general
including tracking of homotopy paths (e.g. Bates et al., 2011; Bates et al., 2008; Bates et al., 2009;
Bates et al., 2006; Chen and Li, 2012; Morgan, 1986), handling singular end points (e.g. Kuo and
Li, 2008; Morgan et al., 1990; Morgan et al., 1992), certifying results (e.g. Hauenstein et al., 2014;
Hauenstein and Levandovskyy, 2011; Hauenstein and Sottile, 2012), as well as applying these methods
to problems in science and engineering (e.g. Allgower and Georg, 2003; Bates et al., 2013; Morgan,
2009; Sommese and Wampler, 2005). Here we single out one computational aspect: the mixed cell
computation.

3. Mixed cell enumeration

Critically important to the above construction of the polyhedral homotopies (7) are the mixed
cells. Recall that the finite sets S1, . . . , Sn ⊂ Nn

0 = (N ∪ {0})n are the supports of the n polynomials
p1, . . . , pn containing points corresponding to the monomials appeared, and ω = (ω1, . . . , ωn) with
each ωi : Si → Q are the generic lifting functions that were used to construct the homotopy (2).
Geometrically, ω “lifts” the point sets S1, . . . , Sn to one higher dimension via a �→ â := (a, ωi(a))

for each a ∈ Si and i = 1, . . . , n. With the resulting “lifted” supports Ŝ i = {â | a ∈ Si} in Rn+1 for each
i = 1, . . . , n, a mixed cell (with respect to the liftings) is represented by a vector α = (α1, . . . , αn) ∈Qn

and its corresponding pairs ({a1, a′
1}, . . . , {an, a′

n}) with ai, a′
i ∈ Si for each i = 1, . . . , n such that the

line segments conv{ai, a′
i} are affinely independent and

⎧⎪⎨
⎪⎩

〈â1, α̂〉 = 〈â′
1, α̂〉 < 〈â, α̂〉 for all a ∈ S1 \ {a1,a′

1}
...

...

〈ân, α̂〉 = 〈â′
n, α̂〉 < 〈â, α̂〉 for all a ∈ Sn \ {an,a′

n}
(11)

where α̂ = (α, 1) ∈ Rn+1 and for each a ∈ Si , â = (a, ωi(a)) ∈ Ŝ i is its “lifted” version in Rn+1.

522 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Remark 3. Interpreted geometrically, a mixed cells consists of n of edges of conv S1, . . . , conv Sn re-
spectively whose liftings in conv Ŝ1, . . . , conv Ŝn share a common inner normal vector (α̂ in this case).
Since we require the inner normal α̂ = (α, 1) to have 1 as the last coordinate (i.e., “upward pointing”
along the en+1 direction), we call such edges “lower” edges. These n edges span an n-dimensional
parallelepiped. According to (9) and (10), the mixed volume (i.e. the BKK bound) is exactly the sum
of the volumes of all such parallelepiped.

Each mixed cell induces an augmented polyhedral homotopy of the form (7). A key step is
therefore the enumeration of all possible mixed cells of the above form, and, as noted above the
mixed volume of (conv S1, . . . , conv Sn) will be produced as an important by-product. This process,
known as “mixed cell enumeration”, turns out to be the main bottleneck in the polyhedral ho-
motopy method both in terms of efficiency and parallel potentials. A rich web of works has since
been developed on this subject (Chen et al., 2014; Emiris and Canny, 1995; Gao and Li, 2000;
Gao and Li, 2003; Gao et al., 2005; Lee and Li, 2011; Li and Li, 2001; Mizutani et al., 2007;
Verschelde et al., 1996).

The above algebraic description (11) of mixed cells is the basis on which most search methods are
developed. While a brute-force approach of checking all the possible combinations against the system
of inequalities (11) is certainly possible, the “combinatorial explosion” will render it impractical for
all but the most trivial cases. One of the most efficient and robust class of algorithms for enumerating
mixed cells is based on the idea of systematic “extension of subfaces”. In this scheme, instead of
finding the n-tuples of subsets of Ŝ1, . . . , ̂Sn satisfying (11) directly, one progressively constructs the
mixed cells by joining one point at a time. In the beginning, one focuses on the first support S1 and
enumerate all the possible a1 ∈ S1 for which there exists an α̂ = (α, 1) ∈Rn+1 such that

〈â1, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1 .

Then for each of these possibilities, one continues to search for a′
1 ∈ S1 \ {a1} for which there exists

an α̂ = (α, 1) ∈Rn+1 such that

〈â1, α̂〉 = 〈â′
1, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1 .

Each of these possibilities, in turn, allows for the search of an additional point a2 ∈ S2 and an α̂ =
(α, 1) ∈ Rn+1 such that

〈â1, α̂〉 = 〈â′
1, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S1

〈â2, α̂〉 ≤ 〈â, α̂〉 for all a ∈ S2.

Similarly, for each of the resulting possibilities further search attempts will be carried out to extend
them. This self-sustaining process continues until one reaches all the possible n-tuples of pairs in
S1, . . . , Sn that satisfy (11) which are exactly all the mixed cells. We formalize this procedure via the
concept of “subfaces”.

Definition 1. Given supports S1, . . . , Sn and liftings ω = (ω1, . . . , ωn), a (k1, . . . , kr)-subface of
(Ŝ1, . . . , ̂Sr) for some r ≤ n is an r-tuple of affinely independent sets of the form({

â(1)
0 , . . . , â(1)

k1

}
, . . . ,

{
â(r)

0 , . . . , â(r)
kr

})
with each a(i)

j ∈ Si for which there exists an α̂ = (α, 1) ∈ Rn+1 such that for each i = 1, . . . , r,

{
〈â(i)

0 , α̂〉 = 〈â(i)
1 , α̂〉 for j = 1 , . . . ,ki

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ Si .

(12)

Furthermore, we say a subface (F1, . . . , Fr) includes the subface (F ′
1, . . . , F

′
r) if F ′

i ⊆ Fi for each i.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 523
Fig. 1. The extension process builds mixed cells one edge at a time.

Comparing with (11), it is clear that mixed cells are simply (1, . . . , 1)-subfaces. With the notion
of subfaces, the basic scheme for the search of mixed cells can then be stated as the systematic
extension of (0)-subfaces to (1)-subfaces and then to (1, 0)-subfaces, etc. The process terminates
when one reaches all the (1, . . . , 1)-subfaces of (Ŝ1, . . . , ̂Sn) which are precisely the mixed cells which
we aimed to find.

The building block for the above scheme for enumerating mixed cells via systematic extension of
subfaces is the “one-point test”. Originally developed in Takeda et al. (2000) and independently in Li
and Li (2001), this simple procedure has since been adopted by most software packages for mixed
cells enumeration. Among a range of different formulations, for simplicity, we state a basic variation:

Definition 2 (One-point test). Given a (k1, . . . , kr)-subface (F1, . . . , Fr) with each Fi = {â(i)
0 , . . . , ̂a(i)

ki
} ⊆ Ŝ i

and a point b̂ ∈ Ŝr \ Fr , the one-point test of b̂ with respect to (F1, . . . , Fr) is the linear programming
problem

L P (F1, . . . , Fr ; b̂) :

Minimize 〈b̂, α̂〉 − h subject to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈â(i)
0 , α̂〉 = 〈â(j)

1 , α̂〉 for all j = 1, . . . ,ki

〈â(i)
0 , α̂〉 ≤ 〈â, α̂〉 for all a ∈ Si, i = 1, . . . , r − 1

h = 〈â(r)
j , α̂〉 for all j = 0, . . . ,kr

h ≤ 〈â, α̂〉 for all a ∈ Sr

(13)

in the n + 1 variables (α, h) = (α1, . . . , αn, h). To include more general situations, we allow Fr to be
empty in this definition.

Remark 4. As noted in Remark 3, the mixed cells can be interpreted as parallelepipeds whose edges
lift to “lower” edges of conv Ŝ1, . . . , conv Ŝn . In the same vein, extension process via successive one-
point tests can therefore be understood as the process of building such parallelepipeds one edge at a
time. Fig. 1 illustrates this process.

Clearly, since the constraints already require h ≤ 〈â, α̂〉 for all a ∈ Sr , the objective function of the
above linear programming problem is therefore bounded below by zero. If the minimum reaches this
lower bound, namely,

h = 〈b̂, α̂〉 ≤ 〈â, α̂〉 for all a ∈ Sr

holds in addition to the imposed constraints, then the (k1, . . . , kr)-subface (F1, . . . , Fr) can be ex-
tended to a (k1, . . . , kr +1)-subface (F1, . . . , Fr ∪{b̂}). On the other hand, if the LP problem is infeasible
or the minimum is strictly greater than zero, then the subface (F1, . . . , Fr ∪ {b̂}) cannot exist and
hence the extension fails. Using such one-point tests, the algorithm for mixed cell enumeration via
systematic extension of subfaces of Ŝ1, . . . , ̂Sn can be constructed.

524 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Remark 5. An important observation is that not every one-point test problem must be solved when
the classical simplex method is used to solve the linear programming problems (13) listed above. The
result of certain one-point test problems can be determined with minimum computational costs using
the fruitful information generated by the “simplicial pivoting” performed in solving other one-point
tests. Indeed, in practice, it is often the case that only a small fraction of one-point test problems
need to be solved. In the last decades, a great number of important techniques have been developed
to take advantage of this special feature. Here we refer to Chen et al. (2014), Lee and Li (2011), Li
(2003), Mizutani and Takeda (2008), Mizutani et al. (2007), Takeda et al. (2000) for discussions of the
more advanced techniques.

Serial algorithms based on this basic scheme has been extensively studied (Gao and Li, 2000;
Gao and Li, 2003; Gao et al., 2005; Gunji et al., 2004; Lee and Li, 2011; Li and Li, 2001; Mizutani
and Takeda, 2008; Mizutani et al., 2007; Takeda et al., 2000). MixedVol-2.0 (Lee and Li, 2011), a part
of Hom4PS-2.0 is widely considered as one of the most efficient serial implementation based on this
scheme. Discussed in the following sections will be the parallel revision of this scheme attempted in
Chen et al. (2014) as well as the recent efforts in improving the parallel scalability.

4. Parallel mixed cells enumeration

While the “path tracking” part of the polyhedral homotopy continuation method is pleasantly paral-
lel, the mixed cell enumeration process is potentially a major bottleneck in terms of parallel scalability.
An important revision in Hom4PS-3, compared to Hom4PS-2.0 (Lee et al., 2008), is the integration of a
fully parallel mixed cell enumeration algorithm that is efficient, robust, and highly scalable. It greatly
extends the reach of polyhedral homotopy method in the realm of large polynomial systems.

Developed in Chen et al. (2014) with direct inspiration from Gao and Li (2000), Lee and Li (2011),
Li and Li (2001), Mizutani and Takeda (2008), the parallelization of the mixed cell enumeration is
based on a reformulation as a graph-theoretic search problem for which parallel algorithm can achieve
great efficiency and scalability.

Recall that in the above scheme, the search for mixed cells is performed by checking candidates of
subfaces (n-tuples of subsets of lifted supports Ŝ1, . . . , ̂Sn) using one-point tests (13). The candidates
of subfaces naturally form a direct acyclic graph or DAG via the (componentwise) inclusion relation-
ship among them: The nodes in this graph are the candidates for subfaces, i.e., r-tuples of the form
(F1, . . . , Fr) where Fi ⊆ Ŝ i for i = 1, . . . , r. It has edges (F1, . . . , Fr) → (F ′

1, . . . , F
′
k) whenever Fi ⊆ F ′

i
for i = 1, . . . , r. Fig. 2 illustrates a portion of such a graph.

Remark 6. For simplicity, in the illustration of the DAG of candidates of subfaces we have implicitly
fixed the ordering of the supports: from S1, S2, . . . to Sn . It is, however, clear that both the notion
of subfaces and their extension process are independent from the ordering. That is, one can perform

Fig. 2. A DAG containing candidates of subfaces with edges representing component-wise inclusion. The set of subfaces forms a
subgraph known as the feasible subgraph.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 525
the extension process in any ordering of the supports. Extensive experiments suggest the ordering of
the supports can greatly influence the overall efficiency of the algorithm. This was first discovered
and exploited in Mizutani et al. (2007) and was adopted, with modification, by MixedVol-2.0 (Lee and
Li, 2011). The same technique is further improved in Chen et al. (2014) and now an integral part of
Hom4PS-3.

In this graph, some nodes, including the mixed cells, are subfaces while others correspond to
tuples that do not define subfaces (Definition 1). The subgraph containing all the subfaces shall be
called the feasible subgraph, referring to the fact that their corresponding systems of inequalities of
the form (12) are feasible. In this context, the mixed cell enumeration process can then be considered
as the problem of gradually exploring the feasible subgraph through the connections among them.

In graph theory, this is a classical graph traversal problem (or a specialized search problem). Clearly,
each node only needs to be visited once. That is, one only needs to explore a spanning tree of the
feasible subgraph. To this end, the algorithm keeps track of all the nodes that are discovered but
not yet completely explored, that is, known nodes whose connections to other nodes are not yet
fully explored. The main task of the algorithm is then to take a discovered (but not yet completely
explored) node and explore its connection via one-point tests (13). Each new node in the feasible
subgraph is then recorded for further exploration. Once all such connections are explored, the original
node is discarded. This process repeats until the entire feasible subgraph has been explored.

This point of view reveals the inherent parallelism in the mixed cell enumeration process: nodes
on different branches of the spanning tree can be explored in parallel. To start the algorithm, an initial
set of nodes corresponding to (0)-subfaces (the topmost nodes in Fig. 2) are generated by solving
one-point test problems of the form L P ({ } ; ̂a) for each â ∈ Ŝ1. For each (0)-subface ({â}) discovered,
the algorithm then explores other potentially connected nodes by solving one-point tests of the form
L P ({â}; ̂a′) for â′ ∈ Ŝ1 \ {â}. From each resulting subface the algorithm can continue the process and
potentially discover more connected nodes. This self-sustaining process continues until all connected
nodes are discovered including the mixed cells which we aim to enumerate. The detail of this class of
algorithms can be found in standard textbooks such as Skiena (2009). However, as noted in Remark 5,
in practice a large number of nodes can generally be discovered without direct exploration.

In order to keep track of the progress of the exploration and coordinate multiple threads, the
collection of discovered (but not yet completely explored) nodes must be stored in a data structure.
However, to conserve memory, all one-point tests with respect to the same subface are grouped
together, called a task. That is, a task represents all the one-point tests of the form L P ((F1, . . . , Fr); ̂b)

where (F1, . . . , Fr) is a subface already discovered. In the CPU-based parallel algorithms, a task will
be the smallest unit in the parallelization in the sense that they are always performed together by a
single thread. The parallelism within a task can be exploited on GPUs and is discussed in §4.4.

The parallel algorithm maintains a dynamic pool of tasks, or simply the task pool. Though a num-
ber of data structures can be used, Hom4PS-3 chose to use a priority queue to maintain the task pool
which provides fine-grained control of the exploration process, e.g., depth-first-search versus breadth-
first-search. We refer to Chen et al. (2014) for the details.

Multiple threads will operate on the task pool and perform one-point tests simultaneously: Each
thread repeatedly fetches a single task from the pool and explores it by performing a series of one-
point tests. This “fetch-and-explore” procedure continues until the task pool is empty and there is no
tasks that are currently being explored. At this point the feasible subgraph is completely explored and
all the mixed cells have been obtained. The algorithm then terminates. This algorithm is summarized
in the following Explore subroutine.

1: function Explore(TaskPool)
2: while TaskPool �= ∅ do
3: (F1, . . . , Fr) ← Dequeue(TaskPool)
4: for all b̂ ∈ Ŝr \ Fr do
5: if IsUnknown((F1, . . . , Fr ∪ {b̂}) then
6: if OnePointTest((F1, . . . , Fr) ; ̂b) then
7: F ′ ← (F1, . . . , Fr ∪ {b̂})

526 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
8: if F ′ is a mixed cell then
9: MixedCells ← MixedCells∪ {F ′}

10: else
11: Enqueue(TaskPool, F ′)
12: end if
13: end if
14: end if
15: end for
16: end while
17: end function

Here the Dequeue subroutine removes a single item from a priority queue, while the Enqueue

subroutine append an item into the priority queue. Since multiple threads will access the priority
queue concurrently, this function must be made thread-safe to prevent a race condition (Herlihy and
Shavit, 2012) (a condition in which multiple threads simultaneously alter the same data structure
resulting in catastrophic data corruption). The IsUnknown function determines if a node has already
been discovered. That is, it returns whether or not the status of a candidate for a subface has al-
ready been determined. This is necessary to prevent a node from being visited more than once. It is
particularly important since, as noted in Remark 5, many nodes can be discovered using information
generated by other one-point tests.

4.1. Parallel mixed cell enumeration on multicore architectures

The work in Chen et al. (2014) has demonstrated that when properly implemented, the parallel
algorithm described above can achieve great efficiency on small to medium sized multicore systems.
In particular, nearly linear speedup has been achieved on systems with up to 12 cores. The integration
of the parallel mixed cell enumeration algorithm into Hom4PS-3 focused on the scalability beyond 12
cores.

As shown in the pseudo code above, the computation intensive part of the Explore subroutine
is pleasantly parallel in the sense that threads do not interact with one another. However, multiple
threads must access the same priority queue (TaskPool) via the Dequeue and Enqueue subroutine.
Consequently, synchronization mechanisms must be in place to prevent race condition. In Chen et al.
(2014), “mutex” (mutual exclusion, a standard mechanism commonly used to ensure only one thread
has access to a data structure) was proposed to guard the task pool and prevent race conditions from
happening. On multicore systems of small to medium size, this solution exhibits acceptable efficiency
and scalability. However subsequent studies reveal that the use of mutex severely limits the overall
scalability of the algorithm on larger systems, that is, it turns out to be the key factor that limits more
processor cores from performing at their peak efficiency. Hom4PS-3, these functions are implemented
based on the concurrent data structure provided by the Intel TBB library which has shown much better
scalability.4

On multi-core systems, the implementation of this algorithm, based on Intel TBB, in Hom4PS-3 has
achieved remarkable efficiency and scalability far superior to the original algorithm proposed in Chen
et al. (2014). Nearly n-fold linear speedups scalable up to 64 processor cores have been observed
in experiments on standard test suite problems. Table 1 shows the speedup ratio observed on the
standard benchmark problem cyclic-15 (Björck and Fröberg, 1991).

4.2. On-the-fly NUMA optimization

Modern shared-memory systems with a large number of processor cores usually adopt a Non-
Uniform Memory Access (Herlihy and Shavit, 2012), or NUMA, architecture in which each processor

4 On systems that Intel TBB does not support, (e.g. certain legacy Unix systems) an alternative implementation based on
non-blocking linked lists is used instead. This implementation, however, will not preserve the priority. That is, tasks will be
fetched in a random order.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 527
Table 1
Speedup ratio (solid line) achieved on a 64 core system
(AMD Opteron processors with a total of 64 cores to-
gether with 512GB memory) for the cyclic-15 (Björck
and Fröberg, 1991) problem showing close to n-fold
linear speedups for up to 64 cores. Here the dashed
line represents the ideal n-fold linear speedup. The
speedup is computed in comparison with the fastest
serial implementations published: MixedVol-2.0 (Lee
and Li, 2011) and DEMiCs (Mizutani and Takeda, 2008).

core can access all the available memory but potentially at different speeds depending on the relative
closeness between the core and memory. Developed in the 1990s as an answer to the scalability limi-
tation in the traditional SMP (symmetric multiprocessing) architectures, it has gained great popularity
in the world of high performance computing especially with AMD and Intel adopting the technology
under the names HyperTransport (2003) and QPI (2007) respectively.

Fig. 3 shows the “memory-processor topology” of a NUMA system that consists of 8 nodes. Each
node contains 4 processor cores as well as their “local” memory which they can access at full speed.
The edges between nodes indicate the direct connectedness between nodes and determines the speed
at which processor cores on one node can access memory on other nodes. For instance a processor
on node 1 can access the memory on node 2 at a slower rate than it could access its local memory
on node 1. The same core can access memory on node 3 at a even slower rate due to the minimum
two jumps required (through node 2 or 4). Similarly there are at least three jumps between node 1
and node 7. Consequently, that processor core would have the slowest memory access to memory on
node 7.

Recall that most of the data required by our algorithm for mixed cell enumeration reside in the
task pool. On the NUMA system, it is therefore crucial to split a single task pool into several task pools
shared by the threads in an optimized pattern that ideally matches the underlying memory-processor
topology. The planning of this pattern is governed by two conflicting constraints:

1. Each thread should access a task pool that is placed as close as possible in terms of memory-
processor topology to optimize the memory access time.

2. Each task pool should be shared by as many threads as possible to avoid load balancing issues
(to be discussed in detail in §4.3).

Unfortunately there is currently no standardized method to determine precisely the memory-
processor topology (Herlihy and Shavit, 2012). In particular, while one generally could inquire from
the operating system which memory access patterns are slow, but not how slow. Coupled with the
fact that the operating system can, at any time, migrate a running thread from one processor core
to another, a dynamic and on-the-fly planning of the task pool placement and sharing pattern is
therefore a necessity. Here we briefly outline the procedure.

528 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Fig. 3. An example of a NUMA node structure.

Fig. 4. Dynamic optimization of the task pool sharing pattern on NUMA architectures.

At the beginning of the extension process, the program starts with an initial “evaluation phase” in
which each thread is spawned with its own task pool in the memory local to the processor core that
the thread runs on.5 During the extension process, each thread will access tasks from all task pools.
The average time for accessing each task pool is monitored, and the resulting data is used to construct
a list of “preferred” task pools for having best access time. (see for example Fig. 4a). Then threads that
prefer the same task pool are grouped into “thread clusters” (see Fig. 4b for the formation of clusters).
Conversely task pools that are preferred by the same cluster of threads are merged (see Fig. 4c for the
merger of task pools). This process is repeated until the threads’ preference of task pools stabilizes.
At this point each cluster of threads has a single preferred task pool that has the best access time
and this “evaluation phase” is terminated. Afterwards, this task pool sharing pattern is fixed and each
thread only access its own preferred task pool. This optimization procedure can be performed again
whenever threads have migrated to different processor cores or certain task pool becomes empty
before others.

Incurring minimum additional computational cost at the initial “evaluation phase”, this technique
substantially improves the memory access time on NUMA systems. As shown in Table 2, in experi-
ments on standard benchmark problems: the cyclic family (Björck and Fröberg, 1991), the five-body
central configuration problem (fivebody) (Albouy and Kaloshin, 2012; Hampton and Jensen, 2011;
Lee and Santoprete, 2009), and the 6-vortex problem (vortexAC6) (Hampton and Moeckel, 2009;

5 On Linux, this is done via the standard library libnuma provided by most Linux distributions. On Unix this step requires the
correct configuration to be set by the user.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 529
Table 2
The memory access speedup (with errors within ±0.05) and overall reductions in run time in
the extension process over the basic algorithm observed in experiments with a few large sys-
tems in standard test suites on a NUMA system consisting of 8 node each having 8 quad-core
AMD Opteron processor with a total of 256 cores. Experiments marked by ‘ * ’ only used 4 out
of 8 nodes (128 of the 256 cores) due to smaller size. The time spent on the computation of
cell volume (9) and the accumulation of the mixed volume are not included since they are not
affect by the memory access pattern.

System Mem. acc. speedup Overall reduction

cyclic-14* 1.40 4.9%
cyclic-15* 2.40 8.2%
cyclic-16* 4.50 9.5%
fivebody 17.55 33.2%
vortex-6 19.95 34.5%

von Helmholtz, 1858), approximately 1.5× to 20× speedup (150% to 2000%) in memory access time6

have been observed which resulted in 5% to 35% overall speedups in the extension process.

Remark 7. The sensitivity in the overall run time to memory access pattern exhibited in Table 2
highlights the possibility that for sufficiently large systems, the mixed cell enumeration problem will
become memory-bound. That is, the run time will no longer be dominated by the number of floating
point operations but will instead be dominated by the memory access latency, an important factor
that is often ignored in complexity analysis.

4.3. Extending to computer clusters

While the above referenced NUMA architecture allows shared-memory systems to scale to tens
or even more than 100 processor cores, their scalability is still limited by the inherently high cost.
Larger systems that contain several hundreds or even thousands of cores generally take the form of
distributed-memory systems in which nodes, connected by some network, do not directly share mem-
ory spaces but communicate with one another by passing messages instead. The parallel algorithm
described above can be extended to distributed-memory systems including computer clusters in which
nodes are connected by dedicated high speed network.

In such distributed-memory systems, a master-worker model is chosen to extend the parallel al-
gorithm described above. In this model, the “master” runs on a single node in the system. It first
populates its own task pool with an initial set of subfaces. The number of initial subfaces is de-
termined based on the number of nodes available within the system (a prescribed multiple of the
number of nodes). This initial task pool is then divided into equal portions and sent to each of the
remaining nodes as seeds for exploration. Each worker executes the Explore algorithm described in
§3 and explores the subgraph accessible from the initial set of nodes sent by the master until its task
pool becomes empty. At the end each worker would have a collection of mutually exclusive mixed
cells. These are then passed back to the master to form a final set of mixed cells. This basic scheme
was proposed in Li and Tsai (2009) and significantly improved in Chen et al. (2014). Fig. 5 shows a
typical setup in which arrows indicate the passing of tasks between nodes.

The Message Passing Interface, or MPI, is a specification that allows nodes to communicate with
one another in a cluster. Though not sanctioned by any major standards body, MPI has became a
de facto standard for scientific computation on computer clusters. In Hom4PS-3, this protocol is used
for the communication between the master and workers.

An implementation based on this master-worker model would not be scalable without load balanc-
ing mechanisms. In exploring the spanning tree of the feasible subgraph, certain branches may require

6 The memory access time is approximated by using the “memory access latency” provided by the Intel VTune software which
closely correlates to the actual memory access time which is generally difficult to measure. For best accuracy, all CPU caches
were disabled when measuring memory access latency.

530 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Fig. 5. A master-worker setup for performing parallel mixed cell enumeration on a computer cluster with 5 nodes. One node
act as the master and the remaining nodes act as workers each having their own task pools. The initial tasks are passed to each
worker for exploration.

Fig. 6. Buffering and load balancing mechanisms among workers. Tasks are moved from one buffer to another in the back-
ground. In contrast to the simple master-worker setup illustrated in Fig. 5, this model relies mostly on direct (peer-to-peer)
communication among worker nodes.

significantly more CPU time than other branches. Such imbalances generally cannot be detected easily
ahead of time, a dynamic load balancing mechanism that actively shifts tasks from one worker to an-
other is therefore critically essential to the overall efficiency and scalability of this algorithm. In Chen
et al. (2014), this problem is resolved by requiring each worker to request more tasks from the master
when it exhausted its own task pool. However, the waiting spent on message passing incurs a mea-
surable and sometime significant cost. Indeed, in large clusters, experiments suggest that the waiting
time often dominate the overall run time as the single master node can be easily overwhelmed by
the large number of worker nodes.

A major improvement Hom4PS-3 provides over Chen et al. (2014) is the use of asynchronous
message passing and buffering to further improve the load balancing mechanism: In addition to the
task pool, each worker also maintains an “overflow buffer” which is filled with newly discovered
tasks whenever the number of tasks in the task pool exceeds a prescribed threshold. The number
of tasks in the buffer is periodically reported back to the master which maintains a dynamic tally
of the imbalance of buffers among the workers. The master periodically broadcasts to all workers
which buffer has the lowest number of tasks. Upon receiving the notice, each worker whose buffer
has higher number of tasks then passes certain number of tasks to the buffers with lowest number
of tasks. Here the passing of tasks from one buffer to another is performed via efficient asynchronous
message passing provided by recent revisions of the MPI standard that are asynchronous in the sense
that they do not interrupt the threads from their main computational intensive task. That is, the
transmission of data takes place in the background and the workers have no need to wait for the
sending or receiving. See Fig. 6 for the illustration. When a worker exhausted its own task pool,
it moves tasks from its own buffer, which resides in the worker’s local memory space, to its task
pool so that the task pool reaches the original prescribed capacity. The worker then continues its
exploration.

The asynchronous load balancing substantially improved the efficiency and scalability of the ba-
sic scheme developed in Chen et al. (2014). The implementation exhibits great scalability on clusters
having between 32 and 200 nodes. It is expected that the speedup ratio cannot get close to those
achieved on a multi-core system (as shown in Table 1) due to the inherently higher cost in commu-
nication. However it is possible to scale to many more processors cores than on multi-core or NUMA

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 531
Fig. 7. Speedup ratios achieved by the distributed-memory variation of the parallel algorithm for mixed cell enumeration over
the fastest serial implementations MixedVol-2.0 (Lee and Li, 2011) and DEMiCs (Mizutani and Takeda, 2008). Measurements are
done in a cluster containing up to 192 processor cores.

system. For example, the speedup ratios achieved using multiple nodes in a cluster for the fivebody
(five body central configuration) problem (Albouy and Kaloshin, 2012; Hampton and Jensen, 2011;
Lee and Santoprete, 2009) is shown in Fig. 7.

4.4. GPU accelerated mixed cell enumeration algorithm

An exciting development in the world of computing is the advent of general purpose parallel com-
putation on GPUs. While originally designed to handle graphics rendering only, over the years GPU
devices have become sufficiently sophisticated to handle a much wider range of problems. Highly par-
allel by design, GPUs are more efficient than traditional CPUs in performing a variety of complex tasks
(NVIDIA Corporation, 2011). In terms of raw computational power, GPU devices have now surpassed
the fastest CPU available (NVIDIA Corporation, 2011). However, hurdles still exist along the path to
fully employing GPU computing. In particular, both the memory layout and thread organization are
very different from their counterparts in traditional CPUs. In NVidia’s CUDA architecture, for exam-
ple, threads are always organized in groups of 32 threads called “warps” (NVIDIA Corporation, 2011)
which are the basic scheduling units in CUDA GPUs with all threads in a warp always perform the
same instruction at the same time.

In the attempt to take advantage of GPU devices, Hom4PS-3 adopts the approach of GPU accelerated
mixed cell enumeration algorithm where the CPUs still perform the main algorithm, and GPU devices
provide assistance in computation intensive tasks that are best suited for GPUs. Though still an exper-
imental part of the software with active development currently underway, the remarkable speedups
obtained definitely merit further investigation on the idea. The preliminary results are therefore pre-
sented here.

The GPU accelerated mixed cell enumeration algorithm explores the parallelism inside individual
“tasks” which is not directly utilized in the approaches discussed above. It comes in the form of a
separated module that performs a specific set of operations inside the one-point test problems (13).
As described in §3, in the parallel algorithm included in Hom4PS-3, the simplex method is preferred
due to the great amount of additional information it generates which can be used to significantly
accelerate the mixed cell enumeration process (see Remark 5).

The simplex method is an iterative method for solving the linear programming problems of the
form (13). The implementation of the simplex method itself is outside the scope of this article, we
therefore refer to Lee and Li (2011), Chen et al. (2014) for the detailed description. Leaving aside the
technical detail, the key property being exploited here is that each iteration in the simplex method
involves the manipulation of a fixed size matrix. In particular, the part that dominates the overall
computational costs takes the form of a matrix-vector multiplication

y ← A · x

532 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Table 3
The average speedup ratio in computing y ← Ax and solving one-
point test problems respectively observed in some standard test
suite problems. The data reflect the average of 10000 one-point
tests for each problem.

System (dimension) Avg. speedup in y ← Ax

cyclic15 (15) 3.55
cyclic19 (19) 3.95
cyclic23 (23) 8.09
cyclic27 (27) 9.00
cyclic31 (31) 31.54
cyclic47 (47) 39.90

where A is a fixed matrix with real entries whose number of rows is much greater than the number
of columns. The potential parallelism in this operation is obvious: in principle, every scalar–scalar
multiplication involved can be computed independently.

A straightforward approach is to utilize the standard NVidia cuBLAS library (NVIDIA Corporation,
2011) which has built-in functions designed specifically for handling this task. Unfortunately, the
cuBLAS library incurs a small but measurable amount of additional cost upon each invocation. Recall
that the enumeration of mixed cells involves a large number of one-point tests, the cumulative costs
associated with cuBLAS often outweighs its benefits, as our experiments suggest.

A direct programming approach is therefore in place. The computation is divided into two steps.
First, all the scalar–scalar products {ai, j · x j} are computed in parallel where ai, j and x j are the entries
of A and x respectively. GPU devices are generally capable of running hundreds or even thousands of
threads simultaneously. Conforming to the organization of threads on GPU, this step is done in block
of 16 × 16 threads. That is, the (i, j) block of 16 × 16 threads computes the array of products

⎡
⎢⎢⎢⎣

a16i,16 j · x16 j a16i,16 j+1 · x16 j+1 · · · a16i,16 j+15 · x16 j+15
a16i+1,16 j · x16 j a16i+1,16 j+1 · x16 j+1 · · · a16i+1,16 j+15 · x16 j+15

...
...

...

a16i+15,16 j · x16 j a16i+15,16 j+1 · x16 j+1 · · · a16i+15,16 j+15 · x16 j+15

⎤
⎥⎥⎥⎦

with one thread computing each entry. Once the scalar–scalar products {ai, j · x j} are all computed,
the standard “parallel reduction” algorithm is then applied to compute the row sums among blocks of
the above form. Table 3 shows the speedup results of this algorithm observed on some standard test
suite problems using a NVidia GTX 970 graphic card. Measuring this operation of computing y ← Ax
alone, approximately 3.5× to 40× speedup ratio have been achieved on sufficiently large systems.

Though still limited in its functionality and portability, on sufficiently large systems the GPU accel-
erated part shows remarkably promising results. Developments in applying GPU to more operations
in the mixed cell enumeration algorithm are currently underway.

5. Concluding remarks

The parallel polyhedral homotopy method is implemented in Hom4PS-3 as a major revision to
its predecessor Hom4PS-2.0 which has already been proved to be efficient and robust in a wide
variety of applications. Inheriting all the core strength of Hom4PS-2.0, the development of Hom4PS-3
focuses on the only major limiting factor of polyhedral homotopy in parallel computation: the mixed
cell enumeration problem. Following the same general approach proposed in Chen et al. (2014) the
current work integrates several important modifications tailored for individual hardware architectures
which have brought substantial improvements in parallel scalability. This development eliminates the
bottleneck of the polyhedral homotopy method in terms of scalability in parallel computation and
greatly extends the reach of this method in dealing with large polynomial systems.

T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534 533
References

Abraham, R.H., Robbin, J.W., 1967. Transversal Mappings and Flows. Benjamin.
Albouy, A., Kaloshin, V., 2012. Finiteness of central configurations of five bodies in the plane. Ann. Math. 176 (1), 535–588.
Allgower, E., Georg, K., 2003. Introduction to Numerical Continuation Methods, vol. 45. Society for Industrial and Applied Math-

ematics.
Attardi, G., Traverso, C., 1995. The PoSSo Library for Polynomial System Solving. In: Proc. of AIHENP95.
Bates, D.J., Hauenstein, J.D., Sommese, A.J., 2011. Efficient path tracking methods. Numer. Algorithms 58 (4), 451–459.
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W., 2008. Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46

(2), 722–746.
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W., 2013. Numerically Solving Polynomial Systems with Bertini. Society

for Industrial and Applied Mathematics.
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler II, C.W., 2009. Stepsize control for path tracking. In: Interactions of Classical

and Numerical Algebraic Geometry. In: Contemp. Math., vol. 496. Amer. Math. Soc., Providence, RI, pp. 21–31.
Bates, D.J., Sommese, A.J., Wampler, C.W., 2006. Multiprecision path tracking. Preprint, arXiv:math/0605105.
Bernshtein, D.N., 1975. The number of roots of a system of equations. Funct. Anal. Appl. 9 (3), 183–185.
Björck, G., Fröberg, R., 1991. A faster way to count the solutions of inhomogeneous systems of algebraic equations, with appli-

cations to cyclic n-roots. J. Symb. Comput. 12 (3), 329–336.
Bozóki, S., Lee, T.-L., Rónyai, L., 2015. Seven mutually touching infinite cylinders. Comput. Geom. 48 (2), 87–93.
Chen, T., Lee, T.-L., Li, T.-Y., 2014. Mixed volume computation in parallel. Taiwan. J. Math. 18 (1), 93–114.
Chen, T., Li, T.-Y., 2012. Spherical projective path tracking for homotopy continuation methods. Commun. Inf. Syst. 12 (3),

195–220.
Chen, T., Li, T.-Y., 2014. Solutions to systems of binomial equations. Ann. Math. Sil. 28, 7–34.
Drexler, F.-J., 1977. Eine methode zur Berechnung sämtlicher Lösungen von Polynomgleichungssystemen. Numer. Math. 29 (1),

45–58.
Emiris, I.Z., Canny, J.F., 1995. Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Com-

put. 20 (2), 117–149.
Gao, T., Li, T.-Y., 2000. Mixed volume computation via linear programming. Taiwan. J. Math. 4 (4), 599–619.
Gao, T., Li, T.-Y., 2003. Mixed volume computation for semi-mixed systems. Discrete Comput. Geom. 29 (2), 257–277.
Gao, T., Li, T.-Y., Wang, X., 1999. Finding all isolated zeros of polynomial systems in Cn via stable mixed volumes. J. Symb.

Comput. 28 (1–2), 187–212.
Gao, T., Li, T.-Y., Wu, M., 2005. Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math.

Softw. 31 (4), 555–560.
Garcia, C.B., Zangwill, W.I., 1979. Finding all solutions to polynomial systems and other systems of equations. Math. Program. 16

(1), 159–176.
Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T., 2004. PHoM–a polyhedral homotopy continuation method for

polynomial systems. Computing 73 (1), 57–77.
Hampton, M., Jensen, A., 2011. Finiteness of spatial central configurations in the five-body problem. Celest. Mech. Dyn. As-

tron. 109 (4), 321–332.
Hampton, M., Moeckel, R., 2009. Finiteness of stationary configurations of the four-vortex problem. Trans. Am. Math. Soc. 361

(3), 1317–1332.
Hauenstein, J.D., Haywood, I., Liddell Jr., A.C., 2014. An a posteriori certification algorithm for newton homotopies. In: Proceed-

ings of the 39th International Symposium on Symbolic and Algebraic Computation. ISSAC ’14. ACM, New York, NY, USA,
pp. 248–255.

Hauenstein, J.D., Levandovskyy, V., 2011. Certifying solutions to square systems of polynomial-exponential equations. arXiv:
1109.4547 [math].

Hauenstein, J.D., Sottile, F., 2012. Algorithm 921: AlphaCertified: certifying solutions to polynomial systems. ACM Trans. Math.
Softw. 38 (4), 28:1–28:20.

Herlihy, M., Shavit, N., 2012. The Art of Multiprocessor Programming. Elsevier.
Huber, B., Sturmfels, B., 1995. A polyhedral method for solving sparse polynomial systems. Math. Comput. 64 (212), 1541–1555.
Kahle, T., 2010. Decompositions of binomial ideals. Ann. Inst. Stat. Math. 62 (4), 727–745.
Kuo, Y.C., Li, T.-Y., 2008. Determining dimension of the solution component that contains a computed zero of a polynomial

system. J. Math. Anal. Appl. 338 (2), 840–851.
Lee, T.-L., Li, T.-Y., 2011. Mixed volume computation in solving polynomial systems. Contemp. Math. 556, 97–112.
Lee, T.-L., Li, T.-Y., Tsai, C.-H., 2008. HOM4ps-2.0: a software package for solving polynomial systems by the polyhedral homotopy

continuation method. Computing 83 (2), 109–133.
Lee, T.-L., Santoprete, M., 2009. Central configurations of the five-body problem with equal masses. Celest. Mech. Dyn. As-

tron. 104 (4), 369–381.
Leykin, A., 2009. NAG4m2: numerical algebraic geometry for Macaulay2.
Leykin, A., 2011. Numerical algebraic geometry. J. Softw. Algebra Geom. 3 (1), 5–10.
Li, T.-Y., 2003. Numerical solution of polynomial systems by homotopy continuation methods. In: Ciarlet, P.G. (Ed.), Handb.

Numer. Anal., vol. 11. North-Holland, pp. 209–304.
Li, T.-Y., Li, X., 2001. Finding mixed cells in the mixed volume computation. Found. Comput. Math. 1 (2), 161–181.
Li, T.-Y., Sauer, T., Yorke, J.A., 1989. The cheater’s homotopy: an efficient procedure for solving systems of polynomial equations.

SIAM J. Numer. Anal., 1241–1251.

http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6162726168616D5F7472616E7376657273616C5F31393637s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib616C626F75795F66696E6974656E6573735F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib616C6C676F7765725F696E74726F64756374696F6E5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib616C6C676F7765725F696E74726F64756374696F6E5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib617474617264695F706F73736F5F31393935s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F656666696369656E745F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F61646170746976655F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F61646170746976655F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F6E756D65726963616C6C795F32303133s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F6E756D65726963616C6C795F32303133s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F7374657073697A655F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F7374657073697A655F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib62617465735F6D756C7469707265636973696F6E5F32303036s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6265726E73687465696E5F6E756D6265725F31393735s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib626A6F72636B5F6661737465725F31393931s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib626A6F72636B5F6661737465725F31393931s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib626F7A6F6B695F736576656E5F32303135s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6368656E5F6D697865645F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6368656E5F73706865726963616C5F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6368656E5F73706865726963616C5F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6368656E5F736F6C7574696F6E735F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib647265786C65725F6D6574686F64655F31393737s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib647265786C65725F6D6574686F64655F31393737s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib656D697269735F656666696369656E745F31393935s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib656D697269735F656666696369656E745F31393935s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F6D697865645F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F6D697865645F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F66696E64696E675F31393939s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F66696E64696E675F31393939s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F616C676F726974686D5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67616F5F616C676F726974686D5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6761726369615F66696E64696E675F31393739s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6761726369615F66696E64696E675F31393739s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67756E6A695F70686F6D706F6C7968656472616C5F32303034s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib67756E6A695F70686F6D706F6C7968656472616C5F32303034s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib68616D70746F6E5F66696E6974656E6573735F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib68616D70746F6E5F66696E6974656E6573735F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib68616D70746F6E5F66696E6974656E6573735F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib68616D70746F6E5F66696E6974656E6573735F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F706F73746572696F72695F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F706F73746572696F72695F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F706F73746572696F72695F32303134s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F63657274696679696E675F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F63657274696679696E675F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F616C676F726974686D5F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib686175656E737465696E5F616C676F726974686D5F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6865726C6968795F6172745F32303132s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib68756265725F706F6C7968656472616C5F31393935s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6B61686C655F6465636F6D706F736974696F6E735F32303130s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6B756F5F64657465726D696E696E675F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6B756F5F64657465726D696E696E675F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65655F6D697865645F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65655F686F6D3470732D322E303A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65655F686F6D3470732D322E303A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65655F63656E7472616C5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65655F63656E7472616C5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C65796B696E5F6E756D65726963616C5F32303131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F6E756D65726963616C5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F6E756D65726963616C5F32303033s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F66696E64696E675F32303031s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F63686561746572735F31393839s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F63686561746572735F31393839s1

534 T. Chen et al. / Journal of Symbolic Computation 79 (2017) 516–534
Li, T.-Y., Tsai, C.-H., 2009. HOM4ps-2.0para: parallelization of HOM4ps-2.0 for solving polynomial systems. Parallel Comput. 35
(4), 226–238.

Li, T.-Y., Wang, X., 1996. The BKK root count in Cn . Math. Comput. Amer. Math. Soc. 65 (216), 1477–1484.
Mehta, D., 2009. Lattice vs. continuum: Landau gauge fixing and ’t Hooft–Polyakov monopoles. Ph.D. Thesis, Australasian Digital

Theses Program. The Uni. of Adelaide.
Mehta, D., 2011a. Finding all the stationary points of a potential energy landscape via numerical polynomial homotopy contin-

uation method. Phys. Rev. E 84, 025702.
Mehta, D., 2011b. Numerical polynomial homotopy continuation method and string vacua. Adv. High Energy Phys. 2011, 263937.
Mehta, D., He, Y.-H., Hauenstein, J.D., 2012. Numerical algebraic geometry: a new perspective on string and gauge theories.

J. High Energy Phys. 1207, 018.
Mehta, D., Nguyen, H., Turitsyn, K., 2014. Numerical polynomial homotopy continuation method to locate all the power flow

solutions. Preprint, arXiv:1408.2732.
Mehta, D., Sternbeck, A., von Smekal, L., Williams, A.G., 2009. Lattice Landau gauge and algebraic geometry. PoS QCD-TNT09,

025.
Minkowski, H., 1911. Theorie der konvexen Korper, insbesondere Begrundung ihres Oberflachenbegriffs. Gesammelte Abh., Her-

mann Minkowski 2, 131–229.
Mizutani, T., Takeda, A., 2008. DEMiCs: A software package for computing the mixed volume via dynamic enumeration of all

mixed cells. In: Stillman, M., Verschelde, J., Takayama, N. (Eds.), Software for Algebraic Geometry. In: IMA Vol. Math. Its
Appl., vol. 148. Springer, pp. 59–79.

Mizutani, T., Takeda, A., Kojima, M., 2007. Dynamic enumeration of all mixed cells. Discrete Comput. Geom. 37 (3), 351–367.
Morgan, A.P., 1986. A transformation to avoid solutions at infinity for polynomial systems. Appl. Math. Comput. 18 (1), 77–86.
Morgan, A.P., 2009. Solving polynomial systems using continuation for engineering and scientific problems. Class. Appl. Math.,

vol. 57. Society for Industrial and Applied Mathematics.
Morgan, A.P., Sommese, A.J., 1989. Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29 (2), 123–160.
Morgan, A.P., Sommese, A.J., Wampler, C.W., 1990. Computing singular solutions to nonlinear analytic systems. Numer. Math. 58

(1), 669–684.
Morgan, A.P., Sommese, A.J., Wampler, C.W., 1992. A power series method for computing singular solutions to nonlinear analytic

systems. Numer. Math. 63 (1), 391–409.
Morgan, A.P., Sommese, A.J., Watson, L.T., 1989. Finding all isolated solutions to polynomial systems using HOMPACK. ACM Trans.

Math. Softw. 15 (2), 93–122.
NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Technical report, July 2011.
Skiena, S.S., 2009. The Algorithm Design Manual. Springer Science & Business Media.
Sommese, A.J., Wampler, C.W., 1996. Numerical algebraic geometry. In: The Mathematics of Numerical Analysis. In: Lect. Appl.

Math., vol. 32. AMS, pp. 749–763.
Sommese, A.J., Wampler, C.W., 2005. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.

World Scientific Pub Co Inc.
Takeda, A., Kojima, M., Fujisawa, K., 2000. Enumeration of all solutions of a combinatorial linear inequality system arising from

the polyhedral homotopy continuation method. J. Oper. Soc. Jpn. 45, 64–82.
Verschelde, J., 1999. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM

Trans. Math. Softw. 25 (2), 251–276.
Verschelde, J., Gatermann, K., Cools, R., 1996. Mixed-volume computation by dynamic lifting applied to polynomial system

solving. Discrete Comput. Geom. 16 (1), 69–112.
von Helmholtz, H., 1858. Uber Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen.

Crelle’s J. Math. 55, 25–55.
Watson, L.T., Billups, S.C., Morgan, A.P., 1987. Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy

algorithms. ACM Trans. Math. Softw. 13 (3), 281–310.

http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F686F6D3470732D322E30706172613A5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F686F6D3470732D322E30706172613A5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6C695F626B6B5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A323031317873s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A323031317873s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A32303131776As1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A32303132776Bs1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A32303132776Bs1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D65687461323031346E756D65726963616Cs1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D65687461323031346E756D65726963616Cs1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A323030397A76s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib4D656874613A323030397A76s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D696E6B6F77736B695F7468656F7269655F31393131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D696E6B6F77736B695F7468656F7269655F31393131s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D697A7574616E695F64656D6963733A5F32303038s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D697A7574616E695F64796E616D69635F32303037s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F7472616E73666F726D6174696F6E5F31393836s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F736F6C76696E675F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F736F6C76696E675F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F636F656666696369656E742D706172616D657465725F31393839s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F636F6D707574696E675F31393930s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F636F6D707574696E675F31393930s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F706F7765725F31393932s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F706F7765725F31393932s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F66696E64696E675F31393839s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib6D6F7267616E5F66696E64696E675F31393839s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib736B69656E615F616C676F726974686D5F32303039s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib736F6D6D6573655F6E756D65726963616C5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib736F6D6D6573655F6E756D65726963616C5F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib736F6D6D6573655F6E756D65726963616C5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib736F6D6D6573655F6E756D65726963616C5F32303035s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib74616B6564615F656E756D65726174696F6E5F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib74616B6564615F656E756D65726174696F6E5F32303030s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766572736368656C64655F616C676F726974686D5F31393939s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766572736368656C64655F616C676F726974686D5F31393939s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766572736368656C64655F6D697865642D766F6C756D655F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766572736368656C64655F6D697865642D766F6C756D655F31393936s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766F6E5F68656C6D686F6C747A5F756265725F31383538s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib766F6E5F68656C6D686F6C747A5F756265725F31383538s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib776174736F6E5F616C676F726974686D5F31393837s1
http://refhub.elsevier.com/S0747-7171(16)30054-2/bib776174736F6E5F616C676F726974686D5F31393837s1

	Mixed cell computation in Hom4PS-3
	1 Introduction
	2 Polyhedral homotopy
	3 Mixed cell enumeration
	4 Parallel mixed cells enumeration
	4.1 Parallel mixed cell enumeration on multicore architectures
	4.2 On-the-ﬂy NUMA optimization
	4.3 Extending to computer clusters
	4.4 GPU accelerated mixed cell enumeration algorithm

	5 Concluding remarks
	References

