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Abstract. Synchronization in networks of interconnected oscillators is a fascinating phenomenon that appears
naturally in many independent fields of science and engineering. A substantial amount of work has
been devoted to understanding all possible synchronization configurations on a given network. In
this setting, a key problem is to determine the total number of such configurations. Through an
algebraic formulation for tree and cycle graphs, we provide upper bounds on this number using the
theory of the birationally invariant intersection index of a family of rational functions. These bounds
are significant and make asymptotic improvements over the best existing bound.
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1. Introduction. The root counting problem for systems of nonlinear equations is fun-
damental in mathematics and has a wide range of applications. In this paper, we focus on
the root counting problem for the Kuramoto equations [31], which are a family of nonlinear
systems that characterizes a form of ``synchronization"" conditions in a network of oscillators.
Such a network-induced system is naturally equipped with rich algebraic and combinatorial
structures. Rooted in the study of spontaneous synchronization in networks of connected os-
cillators, this ubiquitous nonlinear system has a wide range of applications in physics, biology,
chemistry, and engineering [19, 32].

The root counting problem for Kuramoto systems has a long history. In 1982, Baillieul and
Byrnes established an upper bound on the number of roots that depends only on the number of
oscillators in the network which is given by

\bigl( 
2N - 2
N - 1

\bigr) 
[2], with N being the number of oscillators

in the network. Recent studies [13, 36], however, suggest that much tighter upper bounds
that depend on network topology may exist. Leveraging the algebraic and combinatorial
structure of these systems, we confirm this conjecture for two important classes of network
topologies: trees and cycles. In particular, we will demonstrate that this root counting problem
is equivalent to the problem of computing the birationally invariant intersection index [29]
for a certain family of rational functions.
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With this result, and other tools from algebraic geometry and combinatorial geometry,
the primary contribution of this paper is establishing the upper bounds of the root counts for
Kuramoto systems induced by tree and cycle networks of N oscillators which are 2N - 1 and
N
\bigl( 

N - 1
\lfloor (N - 1)/2\rfloor 

\bigr) 
, respectively. We also show that both bounds are sharp when complex roots are

considered. These are dramatic improvements over the best known bound
\bigl( 
2N - 2
N - 1

\bigr) 
as the ratio

between the new bounds and
\bigl( 
2N - 2
N - 1

\bigr) 
goes to zero as N \rightarrow \infty . The new bounds also confirm

the crucial role of network topology in the exhaustive study of Kuramoto systems. From a
computational viewpoint, these explicit sharp upper bounds on the number of roots are also
of great importance in numerical methods for finding all roots to Kuramoto equations because
they provide explicit stopping criteria for iterative solvers, such as Newton-based solvers, as
well as for the homotopy-based monodromy method [21].

The secondary contribution is the general approach of computing the birationally invari-
ant intersection index by finding the appropriate relaxation: By using the much simpler con-
struction of ``adjacency polytope bound,"" the problem is transformed into one of computing
normalized volumes for certain polytopes.

The rest of the paper is structured as follows. In section 2, we state the different for-
mulations of the root counting problem that this paper focuses on. In section 3, we briefly
review the Kuramoto model and existing results on the number of possible equilibria. Section
4 reviews notation and well-known theorems to be used. In sections 5 and 6, we establish
the root count for Kuramoto systems induced by trees and cycles, respectively. Finally, we
conclude in section 7.

2. Problem statement. Kuramoto equations describe the synchronization conditions for
the Kuramoto model. This is one of the fundamental mathematical problems in the study of
spontaneous synchronization in networks of connected oscillators.

Mathematically, a network of N = n+1 oscillators can be described by a weighted graph
G = (V,E,A) in which vertices V = \{ 0, . . . , n\} represent the oscillators, edges E represent
their connections, and weights A = \{ aij\} represent the coupling strength along edges. In
isolation, the oscillators have their own natural frequencies \omega 0, . . . , \omega n. However, in a network
of oscillators the tug of war between the oscillators' tendency to oscillate in their own natural
frequencies and the influence of their neighbors gives rise to rich and complicated phenomena.
This is captured by the Kuramoto model [31]

(1)
d\theta i
dt

= \omega i  - 
\sum 

j\in \scrN G(i)

aij sin(\theta i  - \theta j) for i = 0, . . . , n,

where each \theta i \in [0, 2\pi ) is the phase angle that describes the status of the ith oscillator, and
\scrN G(i) is the set of neighbors of the ith vertex. ``Synchronization"" occurs when these two
forces reach a certain form of equilibrium for all oscillators.

A configuration \bfittheta = (\theta 0, . . . , \theta n) is said to be in frequency synchronization if d\theta i
dt = 0 for all

i at \bfittheta . To remove the inherent degree of freedom given by uniform rotations, it is customary
to fix \theta 0 = 0. Then such synchronization configurations are characterized by the system of n
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nonlinear equations,

(2) \omega i  - 
\sum 

j\in \scrN G(i)

aij sin(\theta i  - \theta j) = 0 for i = 1, . . . , n,

in the variables \theta 1, . . . , \theta n with constant \theta 0 = 0. Then, the root counting problem is the
following.

Problem Statement 1 (real root count). Given \omega 1, . . . , \omega n \in \BbbR and a weighted graph of
n+ 1 nodes, what is the maximum number of real roots the induced system (2) could have?

An upper bound to this answer, that is independent from network topology, is shown to
be
\bigl( 
2n
n

\bigr) 
[2]. However, recent studies [13, 36] suggest that much tighter upper bounds that are

sensitive to network topology may exist. In this paper, we show that this is true.
To leverage tools from algebraic geometry, we reformulate the synchronization system (2)

as a system of rational equations. Using the identity sin(\theta i  - \theta j) = 1
2\bfi (e

\bfi (\theta i - \theta j)  - e - \bfi (\theta i - \theta j))
where i =

\surd 
 - 1, (2) can be transformed into

\omega i  - 
\sum 

j\in \scrN G(i)

ai,j
2i

(e\bfi \theta ie - \bfi \theta j  - e - \bfi \theta ie\bfi \theta j ) = 0 for i = 1, . . . , n.

With the substitution xi := e\bfi \theta i for i = 1, . . . , n, we obtain the Laurent polynomial system

(3) FG,i(x1, . . . , xn) = \omega i  - 
\sum 

j\in \scrN G(i)

a\prime ij

\biggl( 
xi
xj

 - xj
xi

\biggr) 
= 0 for i = 1, . . . , n,

where a\prime ij =
aij
2\bfi and x0 = 1 is a constant. The system FG = (FG,1, . . . , FG,n), is a system

of n rational equations in the n complex variables x = (x1, . . . , xn). Since xi's appear in the
denominator positions, FG is defined only on (\BbbC \ast )n = (\BbbC \setminus \{ 0\} )n. Clearly, each equivalence
class of real roots of (2) (modulo translations by multiples of 2\pi ) corresponds to a root of (3)
in (\BbbC \ast )n. Therefore, we can consider a more general root counting problem as follows.

Problem Statement 2 (\BbbC \ast -root count problem). Given complex constants \omega 1, . . . , \omega n and
a weighted graph of n+ 1 nodes with weights \{ a\prime ij\} , what is the maximum number of isolated
\BbbC \ast -roots the system (3) could have?

In this context, Problem 1 will be a specialized version of Problem 2 since the real roots
counted in the first problem correspond to roots in the real torus (S1)n \subset (\BbbC \ast )n, where
S1 = \{ e\bfi \theta | \theta \in \BbbR \} is the unit circle on the complex plane. Consequently, the root count we
obtain for Problem 2 will also be an upper bound for the root count in Problem 1. The benefit
of focusing on Problem 2 is that the algebraic formulation for Problem 2 allows the use of
powerful tools from complex algebraic geometry, in particular, the theory of the birationally
invariant intersection index.

An important consequence of studying the root count over \BbbC \ast is that achieving the maxi-
mum root count is also a ``generic behavior"" in the entire family of Kuramoto systems induced
by the same network topology. In general, given n complex vector spaces L1, . . . , Ln of ratio-
nal functions in n variables, Kaveh and Khovanskii [29] established that for generic choices
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f1 \in L1, . . . , fn \in Ln, the number of common isolated complex roots of f1, . . . , fn in (\BbbC \ast )n

(or more general toric varieties) is a fixed number, known as the birationally invariant inter-
section index of L1, . . . , Ln in (\BbbC \ast )n which will be denoted by [L1, . . . , Ln] [29, Definition 4.5
and Theorem 4.6]. This number also coincides with the maximum common isolated complex
roots that any choices of f1 \in L1, . . . , fn \in Ln could have [22, 40]. Moreover, [L1, . . . , Ln]
is given by the mixed volume of Newton--Okounkov bodies associated with L1, . . . , Ln and
hence is a wide generalization of the well-known Bernstein--Khovanskii--Kushnirenko (BKK)
bound [5, 30, 33]. We show that the root count in Problem 2 is a special case of the bira-
tionally invariant intersection index. For each vertex i = 1, . . . , n, define the complex vector
space of rational functions

(4) LG,i = span
\Bigl( 
\{ 1\} \cup \{ xix - 1

j  - x - 1
i xj\} j\in \scrN G(i)

\Bigr) 
.

With this construction, the ith function in (3) is an element in LG,i. Therefore, the number of
\BbbC \ast -roots of (3) for generic choices of weights and constant terms will be equal to the number
of common roots of n generic elements from LG,1, . . . , LG,n, respectively, within (\BbbC \ast )n. This
is precisely the birationally invariant intersection index [29], denoted [LG,1, . . . , LG,n].

Problem Statement 3 (birationally invariant intersection index). Given a graph G with n+1
vertices 0, 1, . . . , n, let LG,i=span(\{ 1\} \cup \{ xix - 1

j  - x - 1
i xj\} j\in \scrN (i)

). What is [LG,1 , . . . , LG,n]?

Note that if the coupling strengths \{ aij\} are considered to be independent, then Problems 2
and 3 will be equivalent. The usual convention, however, is to assume that \{ aij\} is symmetric,
i.e., aij = aji. In that case, it is not immediately obvious that these two problems are still
equivalent. As we shall demonstrate (Lemma 8), even under the assumption aij = aji, these
two questions still yield the exact same answer for tree graphs.

Though the intersection index [LG,1, . . . , LG,n] can be expressed as the generalized mixed
volume of the Newton--Okounkov bodies associated with LG,1, . . . , LG,n, its direct computa-
tion, in general, remains a difficult problem. Using a construction known as the ``adjacency
polytope bound"" developed in [11, 14], we will show for trees and cycles that [LG,1, . . . , LG,n]
will be 2N - 1 and N

\bigl( 
N - 1

\lfloor (N - 1)/2\rfloor 
\bigr) 
, respectively. Both are significantly less than the only known

upper bound
\bigl( 
2N - 2
N - 1

\bigr) 
for the general case (heterogeneous oscillators with nonuniform coupling)

of the Kuramoto equations (2) even for small values of n. Asymptotically, in both cases the
ratio between the new bounds and

\bigl( 
2N - 2
N - 1

\bigr) 
goes to zero as N \rightarrow \infty . Moreover, the intersection

index derived from tree graphs also coincides with the well-known lower bound of the number
of real roots to the original (nonalgebraic) system (2), showing that the intersection index
derived from a complex root count can actually be a sharp bound for real roots.

3. Kuramoto model and synchronization equations. The study of synchronization in
networks of coupled oscillators is a particularly pervasive subject in a wide range of indepen-
dent fields of study in biology, physics, chemistry, engineering, and social science. We refer
the reader to [1, 6, 47] for a detailed historical account of this topic. The simplest mechanical
analogue of the coupled oscillator model (2) is a spring network, shown in Figure 1, that con-
sists of a set of weightless particles constrained to move on the unit circle without friction or
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Figure 1. A spring network.

collision [19]. Here, the coupling strength1 aij > 0 characterizes the stiffness of the spring con-
necting particles i and j, and d\theta i

dt represents the angular velocity (or equivalently, frequency)
of the ith particle. Of great interest is the configuration in which the angular velocity of all
particles can become perfectly aligned, known as frequency synchronization. That is, d\theta i

dt = c
for i = 0, . . . , n and a constant c. Adopting a rotational frame of reference, we can always
assume c = 0. That is, frequency synchronization configurations are equivalent to equilibria
of the Kuramoto model (1). Under this assumption, the n+1 equilibrium equations must sum
to zero. This allows for the elimination of one of the equations, producing the system (2) of
n equations in n unknowns. Despite its mechanical origin, the frequency synchronization sys-
tem (2) naturally appears in a long list of seemingly unrelated fields, including electrical power
networks [2, 20], flocking behavior in biology and control theory [27, 48], and decentralized
clock synchronization [45]. We refer the reader to [19] for a detailed list.

In [2], an upper bound on the number of equilibria of the Kuramoto model (solutions
to (2)) induced by a graph of N vertices with any coupling strengths is shown to be

\bigl( 
2N - 2
N - 1

\bigr) 
.

For certain cases, such as the Kuramoto model on the one-, two-, and three-dimensional lattice
graphs with different boundary conditions, as well as for complete and planar graphs, all or at
least a class of equilibria were analytically [10, 17, 18, 28, 38, 41, 43, 50] and numerically [25,
26, 34, 37, 49] found in previous studies. For tree graphs of N nodes, it is well known that
there could be as many as 2N - 1 real equilibria. Various algebraic formulations have been
used to leverage results from algebraic geometry and numerically find some or all equilibria
for certain small graphs [13, 35, 36, 39]. Recently, in the special case of ``rank-one coupling,""
i.e., the matrix [aij ] has rank 1, a much smaller bound 2N  - 2 was established [15]. Based
on the theory of the BKK bound, a search for topology-dependent bounds on the number
of solutions to (2) and (3) was initiated in [13, 36]. In the present contribution, we provide
explicit formulas for a much stronger solution bound: the birationally invariant intersection
index.

4. Preliminaries and notation. For a compact set Q \subset \BbbR n, voln(Q) denotes its standard
Euclidean volume, and the quantity n! voln(Q) is its normalized volume, denoted NVoln(Q).
Say Q is convex if it contains the line segment connecting any two points Q. For a set X \subset \BbbR n,

1In the original model proposed by Kuramoto, the coupling strengths are symmetric, i.e., aij = aji. How-
ever, in more general applications (such as power-flow equations), perfect symmetry may not hold.
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its convex hull is the smallest convex set containing it, denoted conv(X), and its affine span
is the smallest affine subspace of \BbbR n containing it, denoted aff(X). A (convex ) polytope is
the convex hull of a finite set of points. Of particular importance in the current context are
convex polytopes whose vertices lie in \BbbZ n. Such polytopes are called lattice polytopes. A
full-dimensional convex lattice polytope P \subset \BbbR n is said to be reflexive if its dual

P \ast = \{ x \in \BbbR n | \langle x,p\rangle \geq  - 1 \forall p \in P\} 

is also a lattice polytope. Given two convex polytopes P \subset \BbbR n and Q \subset \BbbR m both containing
the origin, their free sum, denoted P \oplus Q, is conv(P \prime \cup Q\prime ) \subset \BbbR n+m, where

P \prime = \{ (p,0) \in \BbbR n+m | p \in P\} 

and
Q\prime = \{ (0,q) \in \BbbR n+m | q \in Q\} .

An important fact is that under mild conditions, the normalized volume of a free sum of lattice
polytopes factors as the product of normalized volumes of the summand polytopes.

Lemma 1 ([7, Theorem 1]). Given two convex lattice polytopes P and Q both containing
the origin as an interior point, if one is reflexive, then NVol(P \oplus Q) = NVol(P ) \cdot NVol(Q).

The set (\BbbC \ast )n, known as an algebraic torus, has the structure of an Abelian group under
componentwise multiplication, and it will be the space in which we study the root count
of synchronization equations. A Laurent monomial in x = (x1, . . . , xn) induced by vector
a = (a1, . . . , an) \in \BbbZ n is the formal expression x\bfa = xa11 \cdot \cdot \cdot xann . It is easy to verify that
as a map from (\BbbC \ast )n to \BbbC \ast , x\bfa is actually a character, i.e., a group homomorphism. In
general, a system of Laurent monomials induced by a1, . . . ,am \in \BbbZ n gives rise to the group
homomorphism x \mapsto \rightarrow (x\bfa 1 , . . . ,x\bfa m) between (\BbbC \ast )n and (\BbbC \ast )m. Of particular importance is
the case where m = n.

Lemma 2 ([22]). Given vectors a1, . . . ,an \in \BbbZ n, the map x \mapsto \rightarrow (x\bfa 1 , . . . ,x\bfa n) is an au-
tomorphism of (\BbbC \ast )n if and only if | det[a1, . . . ,an]| = 1, and in that case the map is a
biholomorphism.

For the integer matrix A = [a1, . . . ,an] and x = (x1, . . . , xn) above, we use the compact
notation xA = (x\bfa 1 , . . . ,x\bfa n) to represent the automorphism induced by A. Such a square
integer matrix A with | det(A)| = 1 is said to be unimodular. Integer matrices are of particular
importance because the linear transformations they induce, known as unimodular transforma-
tions, preserve normalized volume. More generally, an integer matrix (not necessarily square)
is totally unimodular if all its nonsingular submatrices are unimodular. This concept also ex-
tends to lattice polytopes: A lattice simplex is unimodular if its normalized volume is 1, and
a simplicial subdivision of a lattice polytope is unimodular if it consists of only unimodular
simplices. Two polytopes are unimodularly equivalent if one is the image of the other under
a unimodular transformation, and they necessarily have the same normalized volume.

A Laurent polynomial is a finite linear combination of distinct Laurent monomials, i.e.,
an expression of the form f =

\sum 
\bfa \in S c\bfa x

\bfa for some finite S \subset \BbbZ n. The set conv(S) \subset \BbbR n

is called the Newton polytope of f . Newton polytopes play a critical role in calculating the
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generic number of isolated roots in (\BbbC \ast )n (or simply \BbbC \ast -roots) that a system of n Laurent
polynomials could have. Indeed, this generic \BbbC \ast -root count is given by the mixed volume of
the Newton polytopes. This is the content of Bernshtein's theorem [5, 30, 33], and this count
has since been known as the BKK bound [9].

Remark 1. ``Genericity"" is a fundamental concept in algebraic geometry: A generic prop-
erty is true for almost all members of a certain family. In our current context, we can take the
following ``probability 1"" interpretation for the above lemma: If the coefficients of (f1, . . . , fn)
are chosen at random (with independent distributions) among all possible complex coeffi-
cients, then with probability 1, the BKK bound is exact. Stated more precisely, within the
space of all possible coefficients, there is a nonempty Zariski open set such that the BKK
bound is exact for all choices of coefficients in this set. Here, a Zariski open set in this space
is a complement of the zero set of a nontrivial polynomial in the coefficients. Such a Zariski
open set is necessarily open and everywhere dense. The same interpretation applies to the
definition of the birationally invariant intersection index.

A relaxation of the BKK bound was developed in the context of algebraic synchronization
equations [11] as well as the closely related ``power-flow equations"" [14].

Definition 3 (adjacency polytope). Given a graph G, we define its adjacency polytope as

\nabla G = conv(\{ \pm (ei  - ej) | (i, j) \in E(G)\} ).

The normalized volume NVol(\nabla G) is called the adjacency polytope bound of G.

The polytope \nabla G is essentially the convex hull of the union of the Newton polytopes of
the n Laurent polynomial equations in (3), and it can be considered as a geometric encoding
of the topology of the graph G. Adjacency polytopes have been previously studied in order
to identify properties of a related semigroup algebra, such as in [44]. However, previous work
has not addressed the normalized volume of these polytopes. A simple observation [11, 14]
is that the adjacency polytope bound (or simply, AP bound) is indeed an upper bound for
answers to Problems 2 and 3.

Proposition 4. Given a graph G containing vertices \{ 0, 1, . . . , n\} , the number of isolated
\BbbC \ast -solutions for the algebraic system (3) is bounded by the AP bound NVol(\nabla G).

By comparing the constructions of the root counts outlined above, it is easy to verify the
following chain of inequalities:

(5)
\BbbR -root

count of (2)
\leq \BbbC \ast -root

count of (3)
\leq [LG,1, . . . , LG,n] \leq BKK

bound
\leq AP

bound
.

5. Tree graphs. This section provides the answers to Problems 2 and 3 for a tree graph
TN containing N = n + 1 vertices. The strategy is to bound [LTN ,1, . . . , LTN ,n] from above
using the AP bound, and then bound it from below by examining the actual number of roots.
With this, we show that[LTN ,1, . . . , LTN ,n] is 2n = 2N - 1. This agrees with a well-known fact
in the study of the Kuramoto model: For tree graphs, the original (nonalgebraic) Kuramoto
model (1) could have as many as 2N - 1 real equilibria. This shows that even though it is
derived from a complex algebraic formulation, the bound [LTN ,1, . . . , LTN ,n] is also a sharp
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bound for the real roots. That is, the algebraic reformulation (3) from (2) and the extension
to the field of complex numbers does not alter the maximum root count.

Following the common convention, we fix vertex 0 to be the root vertex of TN . For any
other vertex i, let \pi (i) be the unique parent vertex of i, and let d(i) be the depth of the
vertex i (the number of edges in the path between vertex i and vertex 0). We introduce a
new set of variables y1, . . . , yn associated with the nonroot vertices and consider the change
of variables that replaces each xi by the product of all yj 's associated to vertices on the path
between i and the root. This construction can be considered as an algebraic analogue of the
per-path analysis that is often used in the study of the Kuramoto model [19]. We show that
this change of variables preserves all the properties of the solution set for (3) that are relevant
in our discussion.

Lemma 5. The map \phi = (\phi 1, . . . , \phi n) : (\BbbC \ast )n \rightarrow (\BbbC \ast )n given by

\phi i(y1, . . . , yn) = yi

d(i) - 1\prod 
k=1

y\pi k(i) for i = 1, . . . , n

is a bijection, and the Jacobian matrix D\phi is nonsingular everywhere.

Proof. A tree, by definition, has no cycles, so it is always possible to re-index the vertices
such that vertex 0 is the root and \pi (i) < i for any i. With this convention, we can write \phi as
\phi (y) = yA where y = (y1, . . . , yn), and A is an n\times n upper triangular integer matrix with all
diagonal entries being 1. Then A is a unimodular matrix, and hence A - 1 is also a unimodular
integer matrix. It is easy to verify that \psi (x) = xA - 1

is an inverse of \phi , and therefore both
\psi and \phi bijections. Moreover, since detA = 1, by Lemma 2 D\phi (y) is nonsingular for all
y \in (\BbbC \ast )n.

Being a bijection, the transformation \phi given in Lemma 5 preserves the \BbbC \ast -root count
of any system of Laurent polynomials. Moreover, since D\phi remains nonsingular on (\BbbC \ast )n, \phi 
also preserves the more subtle local structures at each solution including multiplicities and
local dimensions. Therefore, in the following we answer the root counting question in the
y-coordinate system via the nonlinear change of variables x = \phi (y).

Theorem 6. For a tree graph TN consisting of N nodes, the AP bound of the induced
algebraic system (3) is 2N - 1.

This result agrees with the general analysis from recent studies [16, 19]. A similar result
for the root counting problem for power-flow equations was developed in [23].

Proof. Let FTN
(x) = FTN

(x1, . . . , xn) be the algebraic system (3) induced by the tree
graph TN . Then each nonconstant monomial in FTN

(x) must be of the form xix
 - 1
\pi (i) or x

 - 1
i x\pi (i)

for some i \in \{ 1, . . . , n\} . With the substitution x = \phi (y) as defined in the previous lemma, it
is easy to verify that the nonlinear interactions among the variables in FTN

are ``decoupled""
in the sense that

xix
 - 1
\pi (i) =

\left(  yi d(i) - 1\prod 
k=1

y\pi k(i)

\right)  \left(  y - 1
\pi (i)

d(\pi (i)) - 1\prod 
k=1

y - 1
\pi k(\pi (i))

\right)  = yi.
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Therefore the set of monomials which appear in FTN
(\phi (y)) is exactly the set \{ 1\} \cup \{ y1, . . . , yn\} \cup 

\{ y - 1
1 , . . . , y - 1

n \} . Under the same transformation, the AP becomes the unimodularly equivalent
cross-polytope

conv

\Biggl( 
n\bigcup 

i=1

conv(\{ \pm ei\} )

\Biggr) 
,

which is a free sum of the n line segments conv(\{ \pm ei\} ) for i = 1, . . . , n. By Lemma 1, the
normalized volume of this polytope is the product of the normalized volume of each of the
summands. Since each line segment is of length 2, the AP bound is therefore 2n = 2N - 1.

We now show that the AP bound is actually sharp. That is, there exist choices of complex
values for \{ a\prime ij\} and \omega 1, . . . , \omega n in (3) for which the system has exactly 2n isolated \BbbC \ast -roots.

Lemma 7. For the tree graph TN containing N = n + 1 vertices, the induced algebraic
system FTN

(\phi (y)) is equivalent to the system

(6) \omega \ast 
i  - a\prime i,\pi (i)

\bigl( 
yi  - y - 1

i

\bigr) 
= 0 for i = 1, . . . , n

for some complex constants \omega \ast 
1, . . . , \omega 

\ast 
n.

Here, the equivalence means the two systems have the same solution set in \BbbC \ast .

Proof. For N = 2, the system FTN
(\phi (y)) contains only one equation,

\omega i  - a\prime 1,0(y1  - y - 1
1 ) = 0,

where y0 = 1. The statement is obviously true in this case.
Now consider a tree TN consisting of N = n+ 1 nodes, and assume the statement is true

for any tree of smaller size. Fixing any leaf vertex in the tree, without loss of generality we
can re-index the vertices so that this leaf vertex has index n and its unique parent vertex is
n - 1. In this arrangement, the nth (last) equation in (3) is

(7) \omega n  - a\prime n,n - 1(yn  - y - 1
n ) = 0,

while the (n - 1)th equation is

(8) \omega n - 1  - a\prime n - 1,n(y
 - 1
n  - yn) - an - 1,\pi (n - 1)(yn - 1  - y - 1

n - 1) - 
\sum 
j\in D

a\prime n - 1,j(y
 - 1
j  - yj) = 0,

where D = \scrN (n - 1) \setminus \{ n, \pi (n - 1)\} . Then adding a\prime n - 1,n/a
\prime 
n,n - 1 times (7) to (8) produces\Biggl( 

\omega n - 1 +
a\prime n - 1,n

a\prime n,n - 1

\omega n

\Biggr) 
 - an - 1,\pi (n - 1)(yn - 1  - y - 1

n - 1) - 
\sum 
j\in D

a\prime n - 1,j(y
 - 1
j  - yj) = 0.

With this transformation, the first n - 1 equations do not involve yn, and they form a smaller
algebraic system induced by a tree graph consisting of n vertices 0, 1, . . . , n  - 1. By the
induction hypothesis, this smaller system can be transformed into the desired form given
in (6) without altering the solution set. By induction, the statement is true for all tree
graphs.
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Lemma 8. Given a tree graph TN containing N vertices, there exist choices of complex
valued weights \{ a\prime ij\} (i,j)\in E(TN )

and complex constants \omega 1, . . . , \omega n, such that the induced system

FTN
(x) = 0 has exactly 2N - 1 nonsingular isolated \BbbC \ast -solutions.

Proof. By Lemma 7, the induced algebraic system FTN
(x) is equivalent to (6). Under the

transformation x = \phi (y) given in Lemma 5, FTN
(\phi (y)) is

(9) \omega \ast 
i  - a\prime i,\pi (i) (yi  - y - 1

i ) = 0 for i = 1, . . . , n,

which has the same number of isolated nonsingular solutions in (\BbbC \ast )n as the original system.
Concerning \BbbC \ast -solutions, the ith equation in the above system is equivalent to the quadratic
equation

\omega \ast 
i yi  - a\prime i,\pi (i) y

2
i + a\prime i,\pi (i) = 0,

which has exactly two \BbbC \ast -solutions for a generic choice of coefficients (even if we require
a\prime ij = a\prime ji). Since there are n independent quadratic equations in y1, . . . , yn, respectively, the

generic root count for (9) is exactly 2n = 2N - 1. Consequently the \BbbC \ast -solution count of the
original system FTN

can also reach 2N - 1.

Recall that the intersection index [LTN ,1, . . . , LTN ,n] is an upper bound for the number of
isolated \BbbC \ast -solutions that the system FTN

could have. Therefore [LTN ,1, . . . , LTN ,n] is at least
2N - 1. Although this lemma does not directly demonstrate that generic choices of coefficients
for (9) correspond to a generic choice of FTN

, by combining Theorem 6 and the comparison (5),
we can conclude that [LTN ,1, . . . , LTN ,n] = 2N - 1.

Corollary 9. Given a tree graph TN containing N = n+ 1 vertices, let LTN ,1, . . . , LTN ,n be
the subspace of rational functions defined in (4). Then

[LTN ,1, . . . , LTN ,n ] = 2n = 2N - 1.

6. Cycle graphs. In the study of the Kuramoto model, cycle graphs may be considered
as basic building blocks; recent works suggest that it is plausible that detailed analysis of
the local geometry near equilibria can be done on a cycle-by-cycle basis [8]. In the context of
power-flow study, the analysis of the Kuramoto model on cycle graphs is also of great practical
importance [49].

For a cycle graph CN of N = n + 1 vertices (labeled by \{ 0, . . . , n\} ), we show that the
intersection index [LCN ,1, . . . , LCN ,n] is (n + 1)

\bigl( 
n

\lfloor n/2\rfloor 
\bigr) 
. Following the strategy used in the

previous section, we first compute the AP bound for the cycle graph CN . Then we show that
there is no gap between [LCN ,1, . . . , LCN ,n] and the AP bound.

The set of edges is E(CN ) = \{ (0, 1), (1, 2), . . . , (n  - 1, n), (n, 0)\} . The induced adjacency
polytope (Definition 3) is

\nabla CN
= conv\{ \pm (ei  - ej) | (i, j) \in E(CN )\} ,

where e0 = (0, . . . , 0) as before. The AP bound for FCN
is defined as the normalized volume

of \nabla CN
; thus, the first goal of this section is to identify this normalized volume. It will be

simplest to first notice that \nabla CN
is unimodularly equivalent to the polytope

PN = conv\{ \pm e1 , . . . , \pm en , \pm (e1 + \cdot \cdot \cdot + en)\} .
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Such an equivalence can be seen by applying the normalized volume-preserving (unimodular)
transformation given by \left[       

1 0 0 \cdot \cdot \cdot 0
1 1 0 \cdot \cdot \cdot 0
1 1 1 \cdot \cdot \cdot 0
...

...
...

. . .
...

1 1 1 \cdot \cdot \cdot 1

\right]       
to each vertex of \nabla CN

. One reason this is desirable is because it becomes clear that PN is
totally unimodular; that is, the matrix formed by placing the vertices of PN as the columns is
a totally unimodular matrix. Since 0 is the average of all vertices of PN , it is an interior point
of PN . Thus, a unimodular triangulation of the boundary of PN will induce a unimodular
triangulation of PN itself, where the simplices are of the form conv\{ 0 \cup \Delta \} , where \Delta is a
simplex in the triangulation of the boundary. This will be our strategy, since the number of
simplices in a unimodular triangulation of a polytope is identical to the normalized volume of
the polytope.

When N is odd, PN is called a del Pezzo polytope. In this case, it is known [42, Remark
4.3] that PN is simplicial; that is, every facet is a simplex. Together with PN being totally
unimodular, its normalized volume is therefore equal to the number of its facets, which was
shown to be N

\bigl( 
N - 1

(N - 1)/2

\bigr) 
. So, we need only consider when N is even, and we would like to

obtain an analogous formula.

Proposition 10. For even N , let \Lambda n \subseteq \{  - 1, 1\} n be the set of sequences (\lambda 1, . . . , \lambda n) such
that

\sum n
i=1 \lambda i = 1. The facets of PN are then

\scrF (PN ) =

\Biggl\{ 
\pm conv

\Biggl\{ 
\lambda 1e1, . . . , \lambda nen,

n\sum 
i=1

ei

\Biggr\} 
| (\lambda 1, . . . , \lambda n) \in \Lambda n

\Biggr\} 
.

Proof. First, observe that the vertices of a facet must consist of a subset of

(10) \{ \lambda 1e1, . . . , \lambda nen, \lambda n+1(e1 + \cdot \cdot \cdot + en)\} 

for some choice of \lambda 1, . . . , \lambda n+1 \in \{  - 1, 1\} . Otherwise, two vertices \pm v of PN would be part
of a facet, which is impossible since the line segment conv\{  - v,v\} passes through the interior
of PN .

Next, note that if F is a facet, then so is  - F since PN =  - PN . One specific choice of
facet is

F0 = conv

\Biggl\{ 
e1, . . . , e(n - 1)/2, - e(n+1)/2, . . . , - en, - 

n\sum 
i=1

ei

\Biggr\} 
.

To see why this is true, observe that each of the vertices in F0 lies on the hyperplane

\{ (x1 . . . , xn) \in \BbbR n | \ell (x1, . . . , xn) = 1\} ,

where

\ell (x1, . . . , xn) =

(n - 1)/2\sum 
i=1

xi  - 
n\sum 

i=(n+1)/2

xi,



500 TIANRAN CHEN, ROBERT DAVIS, AND DHAGASH MEHTA

and all other vertices v of PN satisfy \ell (v) =  - 1. Moreover, the first n vertices defining F0

are clearly affinely independent, so dimF0 = n - 1. Therefore, F0 is indeed a facet of PN .
Any other choice of (\lambda 1, . . . , \lambda n) \in \Lambda n for the elements in \scrF (PN ) will result in a facet

as well, since the resulting convex hull is unimodularly equivalent to F0. Hence, the same
arguments can be applied to these sets. It remains to show that no other set of vertices will
form a facet.

Take any element of (10) such that there are k \geq 2 more negative than positive coefficients
on the summands e1, . . . , en, and set \lambda n+1 =  - 1. Without loss of generality, we can assume
\lambda 1 = \cdot \cdot \cdot = \lambda (n - 2k+1)/2 = 1 and the remaining \lambda i =  - 1. Call their convex hull F \prime . Form \ell (x)
as before and note that the first n vertices of F \prime satisfy \ell (x1, . . . , xn) = 1. Additionally, the
vertices v of PN not in F \prime satisfy \ell (x1, . . . , xn) < 1. However, \ell ( - e1 - \cdot \cdot \cdot  - en) = k, so aff(F \prime )
actually passes through the interior of PN and cannot define a facet.

Note as well that if we take any n-element subset of (10) without \pm (e1 + \cdot \cdot \cdot + en), then
we come across a problem similar to that in the previous paragraph. If we take an n-element
subset that excludes \pm ej for some j, then the resulting hyperplane is exactly the same as if
we included \pm ej . Therefore, there are no facets of any other form.

In order to continue, we need to define more terminology. Given an element p \in \BbbQ n, let
Np = \BbbZ (e1, . . . , en, p), a lattice in \BbbR n, where \BbbZ A indicates the set of \BbbZ -linear combinations of
elements of A. We say that two sublattices J,K \subseteq Np are complementary if every element of
aff(J \cup K)\cap Np is the sum of a unique element of J and a unique element of K. Additionally,
a polytope P \subseteq \BbbR n is called an affine free sum if P = conv(P1 \cup P2), where P1 \cap P2 = \{ p\} for
some p \in \BbbQ n, and the two lattices (aff(P1 - p))\cap Np and (aff(P2 - p))\cap Np are complementary.
Finally, we say that P \subseteq \BbbR n is Gorenstein of index k if

1. there exists a smallest positive integer k for which kP contains a unique lattice point
in its interior;

2. P is a lattice polytope; and
3. the polar dual of P ,

\{ x \in \BbbR k | xT y \leq 1 for all y \in P\} ,

is also a lattice polytope.
If P is a translate of a Gorenstein polytope by a lattice point, then we also call P Gorenstein.

By setting z = (1, . . . , 1, t) as in [3, Corollary 5.9] and applying [4, Corollary 3.21], we can
see all of these definitions come together nicely in the following way.

Lemma 11. If P \subseteq \BbbR n is the affine free sum of P1 and P2, and P1 is Gorenstein of index
1, then

NVol(P ) = NVol(P1)NVol(P2).

A more direct proof of this result is also presented in the recent work [12] by the first two
authors.

We can now take another step toward finding the normalized volume of PN .

Proposition 12. The normalized volume of each facet of P (CN ) is N
2 .

Proof. By permuting the coordinates of each facet of PN , which are described in Proposi-
tion 10, one sees that the elements of \scrF (PN ) are all unimodularly equivalent to one another.
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Since unimodular equivalence preserves normalized volume, it is sufficient to find the normal-
ized volume of only one facet; for convenience, we will select the facet F0 from the previous
proof.

Our overall strategy will be to first project F0 into a smaller-dimensional space in a way
that preserves the normalized volume. Then, we will construct a triangulation of this projec-
tion into unimodular simplices, and finally, count the number of simplices in the triangulation.

By applying the unimodular transformation x \mapsto \rightarrow Ax to F0, where A = (ai,j) is the n\times n
matrix

ai,j =

\left\{     
1 if i = j or both i = n, j < (n - 1)/2,

 - 1 if both i = n, (n - 1)/2 < j < n,

0 else,

we obtain a polytope whose vertices are identical to those of F0 in the first n - 1 coordinates and
are exactly 1 in the final coordinate. Since this is a unimodular map, NVol(F0) = NVol(f(F0)).
By projecting f(F0) to the first n  - 1 coordinates, we obtain the polytope F 0, which also
satisfies NVol(F0) = NVol(F 0). As a result, we have

F 0 = conv

\Biggl\{ 
0, e1, . . . , e(n - 1)/2, - e(n+1)/2, . . . , - en - 1, - 

n - 1\sum 
i=1

ei

\Biggr\} 
\subseteq \BbbR n - 1.

Notice that we can write F 0 = conv\{ G1 \cup G2\} , where

G1 = conv

\Biggl\{ 
e1, . . . , e(n - 1)/2, - 

n - 1\sum 
i=1

ei

\Biggr\} 

and

G2 = conv\{ 0, - e(n+1)/2, . . . , - en - 1\} ,

which intersect only at the origin. Additionally, the intersection of their affine spans is the
single point

\{ v0\} = aff(G1) \cap aff(G2) =

\biggl\{ \biggl( 
0, . . . , 0, - 1

(n+ 1)/2
, . . . , - 1

(n+ 1)/2

\biggr) \biggr\} 
.

One may verify that the lattices aff(Gi  - p) \cap Np are

L1 = \BbbZ 

\Biggl( 
e1  - v0, . . . , e(n - 1)/2  - v0, - 

\Biggl( 
n - 1\sum 
i=1

ei

\Biggr) 
 - v0

\Biggr) 
,

and

L2 = \BbbZ ( - v0, - e(n+1)/2  - v0, . . . , - en - 1  - v0) = \BbbZ (v0, - e(n+1)/2, . . . , - en - 1).

From these descriptions, it is clear that each point of L = \BbbZ (e1, . . . , en - 1,v0) is a sum of a
unique element from L1 and a unique element from L2.
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Therefore, F 0 is the affine free sum of G1 and G2. Since G2 is a standard simplex, its
normalized volume is 1. By Lemma 11, we have

NVol(F 0) = NVol(G1)NVol(G2) = NVol(G1).

Thus it remains to find the normalized volume of G1, which is unimodularly equivalent to the
simplex

conv\{ e1, . . . , e(n - 1)/2, - (e1 + \cdot \cdot \cdot + e(n - 1)/2)\} .

It is straightforward to compute (say, by computing the appropriate determinant) that this
simplex has a normalized volume of n - 1

2 + 1 = n+1
2 , as desired.

This gives us the final piece we need.

Theorem 13. For a cycle graph of N vertices, the AP bound of (3) is

N

\biggl( 
N  - 1

\lfloor (N  - 1)/2\rfloor 

\biggr) 
.

Proof. We already saw that the conclusion holds when N is odd. When N is even, we
recognize that if we can determine the normalized volume of each facet F of PN , then conv\{ 0\cup 
F\} is a distinct element of a polytopal decomposition of PN with the same normalized volume;
the latter fact comes from the fact that PN is totally unimodular, so conv\{ 0\cup F\} is a pyramid
over F , which preserves normalized volume.

Since each \lambda \in \Lambda n corresponds to a unique facet of PN containing e1 + \cdot \cdot \cdot + en, we have

| \scrF (PN )| = 2

\biggl( 
N  - 1

N/2 - 1

\biggr) 
.

Indeed, there are
\bigl( 

n
(n - 1)/2

\bigr) 
elements in \Lambda n, and this must be doubled to account for the facets

containing  - (e1 + \cdot \cdot \cdot + en). So, we now simply count

NVol(PN ) = NVol(F 0)| \scrF (PN )| =
\biggl( 
N

2

\biggr) 
2

\biggl( 
N  - 1

N/2 - 1

\biggr) 
= N

\biggl( 
N  - 1

\lfloor (N  - 1)/2\rfloor 

\biggr) 
,

as desired.

By the inequalities (5), the AP bound above is also an upper bound for the birationally
invariant intersection index. We now show there is no gap between the two. Let FCN

=
(FCN ,1, . . . , FCN ,n), with each FCN ,i being a generic element from LCN ,i, and let \nabla CN ,1, . . . ,
\nabla CN ,n be their Newton polytopes, respectively.

The BKK bound of the system FCN
coincides with its AP bound by [11, Proposition 1]. We

significantly strengthen this result by showing that even though the spaces LCN ,1, . . . , LCN ,n

are not generated by monomials, the intersection index [LCN ,1, . . . , LCN ,n] still agrees with
the BKK bound for FCN

. This is done by using the strong version of Bernshtein's theo-
rem. We use the following notation: Given a nonzero vector v \in \BbbR n, init\bfv f is defined as\sum 

\bfa \in (S)\bfv 
c\bfa x

\bfa , where (S)\bfv is the subset of S on which the linear functional \langle \cdot ,v\rangle attains its

minimum. Extending this notation to a system of Laurent polynomials F = (f1, . . . , fn), we
write init\bfv F = (init\bfv f1, . . . , init\bfv fn).
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Theorem 14 ([5, Theorem B]). Consider a system of n Laurent polynomials F = (f1, . . . , fn)
in n variables. If init\bfv F has no solution in (\BbbC \ast )n for any nonzero vector v \in \BbbR n, then all
solutions of F (x) = 0 are isolated, and the total number is exactly the BKK bound of the
system.

An important fact is that for a generic choice (Remark 1) of the coefficients, the BKK
bound is exact.

Lemma 15 ([5]). Let F = (f1, . . . , fn) be a system of n Laurent polynomials in n variables.
For generic choices of coefficients, and any nonzero v \in \BbbR n, init\bfv F has no solution in (\BbbC \ast )n.

With these, we show that the birationally invariant intersection index induced by cycle
graphs coincides with the AP bound computed in Theorem 13.

Theorem 16. Given a cycle graph CN containing N = n+ 1 vertices, let LCN ,1, . . . , LCN ,n

be the subspace of rational functions defined in (4). Then

[LCN ,1, . . . , LCN ,n ] = N

\biggl( 
N  - 1

\lfloor (N  - 1)/2\rfloor 

\biggr) 
.

The proof strategy is to show that even though there are algebraic relations among the
coefficients for terms in FCN

, such relations will not appear in any nontrivial initial systems.

Proof. Let v be a vector in \BbbR n. If (\nabla CN ,i)\bfv is a singleton for any i \in \{ 1, . . . , n\} , then
init\bfv (F\nabla CN

,i) has only one term. Consequently the initial system init\bfv (F\nabla CN
) has no solution

in (\BbbC \ast )n. It remains to show that the same is true if (\nabla CN ,i)\bfv is not a singleton for any
i = 1, . . . , n. Since the polytopes \nabla CN ,i all contain the origin, we must have

ht\bfv (\nabla CN ,i) := min\{ \langle x,v\rangle | x \in \nabla CN ,i\} \leq 0 \forall i.

If ht\bfv (\nabla CN ,i) = 0 for all i, then \langle \pm (ei  - ej),v\rangle = 0 for any pair of (i, j) \in E(CN ). It is then
easy to verify that v = 0.

Now, supposing v \not = 0, there must be a vertex i \in \{ 1, . . . , n\} for which ht\bfv (\nabla CN ,i) < 0.
Recall that \nabla CN ,i has at most four vertices: \{ \pm (ei  - ej),\pm (ek  - ej)\} where \{ j, k\} = \scrN CN

(i).
But the linear functional \langle \bullet ,v\rangle must attain negative values for at least two points in this set.
That means there are exactly two points bj \in \{ ei  - ej , ej  - ei\} and bk \in \{ ei  - ek, ek  - ei\} 
such that \langle bj ,v\rangle < 0 and \langle bk,v\rangle < 0. However, since bj \in \nabla CN ,j and bk \in \nabla CN ,k, both
ht\bfv (\nabla CN ,j) and ht\bfv (\nabla CN ,k) are negative. In other words, if ht\bfv (\nabla CN ,i) < 0 for some vertex
i, then ht\bfv (\nabla CN ,j) < 0 for any j \in \scrN CN

(i). Since CN is connected, as this implication
propagates through the graph we can conclude that ht\bfv (\nabla CN ,j) < 0 for all i \in \{ 1, . . . , n\} .
Consequently, for each (i, j) \in E(CN ), the two points ei  - e\bfj and ej  - ei cannot both be in
(\nabla CN ,i)\bfv or (\nabla CN ,j)\bfv . Recall that ei  - ej and ej  - ei are the exponent vectors of xi

xj
and

xj

xi
, respectively. Therefore either xi

xj
or

xj

xi
appears in init\bfv FCN

. Consequently, monomials

appearing in init\bfv FCN
all have independent coefficients. Then by Lemma 15, for a generic

choice of coefficients, the initial system init\bfv (FCN
) = 0 has no solution in (\BbbC \ast )n. This is

true for any nonzero vector v, so by Theorem 14 the number of solutions that FCN
= 0 has

in (\BbbC \ast )n is exactly the BKK bound. Since FCN
is a generic choice, we can conclude that

[LCN ,1, . . . , LCN ,n] agrees with the BKK bound and hence the AP bound shown above.
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7. Conclusion. Synchronization of coupled oscillators is a fascinating phenomenon with
a wide variety of applications in, e.g., living organisms, power grids, and computer and social
networks [1, 47]. In this paper, we focused on one of the most popular mathematical models
for studying synchronization from an algebraic point of view, namely, the Kuramoto model. In
particular, we concentrated on the root counting problem for the synchronization equations,
which correspond to the counting of steady states for the corresponding system of ordinary
differential equations (2) of the model.

After reformulating the synchronization equations as a system of Laurent polynomials
(polynomials that allow negative exponents), we apply the theory of the birationally invariant
intersection index to the root counting problem. In particular, we show that the maximum
complex root count coincides with the birationally invariant intersection index of a family of
rational functions which has rich combinatorial structure over the algebraic torus (\BbbC \ast )n =
(\BbbC \setminus \{ 0\} )n. Through this connection and the construction of adjacency polytopes (APs), we
establish that the upper bounds for the root counts of the Kuramoto equations induced by
tree and cycle graphs are 2N - 1 and N

\bigl( 
N - 1

\lfloor (N - 1)/2\rfloor 
\bigr) 
, respectively, where N is the number of

vertices in the graph (i.e., the number of oscillators in the network). Both of these bounds
are asymptotically tighter than the best known upper bound, which is

\bigl( 
2N - 2
N - 1

\bigr) 
. Moreover, our

constructive proofs also demonstrated that these two upper bounds are sharp if complex roots
are considered. In the case of tree graphs, our upper bound also coincides with a well-known
lower bound for maximum real root count. These results confirm a conjecture proposed by
a series of recent works [13, 36]: A topology-dependent upper bound for the root count of
the Kuramoto system exists and may be much smaller than the general upper bound that
depends only on the size of the network.

The explicit formulae of these upper bounds (i.e., the birationally invariant intersection
index) established here also have direct practical implications in the effort to numerically
solve Kuramoto equations. In the general problem of numerically solving large-scale nonlinear
systems of equations, numerical homotopy methods have proven to be robust, efficient, and
highly scalable [46]. A homotopy construction starts with an upper bound on the number of
complex roots that a nonlinear system could have. Then a ``target"" system is continuously
deformed into a ``starting"" system with the same root count but which can be solved easily
(or with known roots). Numerical ``continuation"" methods are then applied to track the
roots under this deformation and thereby solve the target system. In this paper, we provided
the first ingredient in this recipe. Moreover, the constructive approach we adopted in the
computation of the volume of the APs also produced decompositions or subdivisions that can
be constructed algorithmically. It is thus plausible that these will lead to specialized versions
of polyhedral homotopy [24] that can be started without the computationally intensive step
of ``mixed cells computation."" This direction will be the focus of our future research. More
generally, the upper bounds developed here also serve as explicit stopping criteria for other
iterative solvers.

Finally, we point out the interesting parallel between this paper and the recent work
by Coss et al. [15] where a different root count is established under the condition that the
coupling strength matrix A = [aij ] is of rank 1. Here, A is the weighted adjacency matrix
of the underlying graph, and thus the graph topology is reflected in the sparsity pattern
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of A. Since both sparsity pattern and rank can be loosely interpreted as measures for the
amount of information a matrix actually contains, both works seem to suggest a strong link
between the much lower root count (when compared to the most general upper bound) and
the informational content of A. It is thus reasonable to ask whether a rigorous link in this
direction can be established, thereby unifying both points of view.
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