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Abstract. The study of frequency synchronization configurations in Kuramoto models is a ubiquitous mathe-
matical problem that has found applications in many seemingly independent fields. In this paper,
we focus on networks whose underlying graph are cycle graphs. Based on the recent result on the
upper bound of the frequency synchronization configurations in this context, we propose a toric
deformation homotopy method for locating all frequency synchronization configurations with com-
plexity that is linear in this upper bound. Loosely based on the polyhedral homotopy method, this
homotopy induces a deformation of the set of the synchronization configurations into a series of toric
varieties, yet our method has the distinct advantage of avoiding the costly step of computing mixed
cells. We also explore the important consequences of this homotopy method in the context of direct
acyclic decomposition of Kuramoto networks and tropical stable intersection points for Kuramoto
equations.
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1. Introduction. A network of connected oscillators is set of objects, varying between two
states, that can influence one another through connections among the oscillators. A network
of N = n+ 1 oscillators can be mathematically described by a weighted graph G = (V,E,A)
on the vertex set V = {0, . . . , n}, representing the oscillators, with edges E representing
the connections among the oscillators, and weights A = {aij} on the edges representing the
coupling strength along edge {i, j}, i.e., the level of mutual influence between oscillators i
and j. For each i = 0, . . . , n, oscillator i has its own natural frequency ωi, a constant such
that dθi

dt = ωi if the oscillator is an isolated vertex of the network. Of course, in practice, an
oscillator is affected by those it is adjacent to, and describing the full network can be done
using the Kuramoto model [15]

(1.1)
dθi
dt

= ωi −
∑

j∈NG(i)

aij sin(θi − θj), for i = 0, . . . , n,

where each θi ∈ [0, 2π) is the phase angle that describes the status of the i-th oscillator, and
NG(i) is the set of neighbors of the i-th vertex. A fundamental mathematical problem in the
study of Kuramoto model as well as the behavior of coupled oscillators is the occurrence of
synchronization. Among many different notions of synchronization, this paper focuses only
on “frequency synchronization”. Frequency synchronization occurs when the two competing
forces of oscillators to stay with their natural frequency and the influence of their neighbors
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reach equilibrium for all oscillators and they are all tuned to the same frequency. More
precisely, a configuration θ = (θ0, . . . , θn) is said to be in frequency synchronization if at this
point dθi

dt = c for a common constant c for all i. That is,

(1.2) ωi −
∑

j∈NG(i)

aij sin(θi − θj) = c, for i = 0, . . . , n,

in the variables θ1, . . . , θN with c being some constant.
In this paper, we focus on the cases where the underlying graph is a cycle, i.e., the set

of edges E of G consists of {0, 1}, {1, 2}, . . . , {n − 1, n}, {n, 0}. In [5], an upper bound on
the total number of isolated solutions the synchronization equations (1.2) has is shown to be
N
(

N−1
b(N−1)/2c

)
using the theory of birationally invariant intersection index. Indeed, this upper

bound is generically sharp for a complexified version of (1.2). It is then natural to ask if there
exists an algorithm that can locate all solutions of (1.2) with a complexity that is linear in
this solution bound N

(
N−1

b(N−1)/2c
)
. This is the main topic that this paper addresses.

The primary contribution of this paper is to provide a homotopy method in the spirit
of polyhedral homotopy that will find all isolated solutions of (1.2). The total number of
homotopy paths to be tracked with this method is exactly the solution bound N

(
N−1

b(N−1)/2c
)
.

Yet, this method offers significant advantages over a direct application of polyhedral homotopy
via the following features:

• our method does not require the costly step of computing mixed cells and mixed
volume;
• our method uses integer liftings of {0, 1, 2} and hence avoids the well known

numerical instability caused by random liftings; and
The secondary contribution is an explicit description of a regular unimodular triangulation of
the adjacency polytope which significantly strengthens the previous volume and facet descrip-
tion results [5]. The tertiary contribution is our significant refinement for the direct acyclic
decomposition scheme proposed in [2] for cycle graphs. This refined scheme is capable of
reducing a network into simplest subnetworks known as primitive subnetworks for which fre-
quency synchronization configurations can be computed directly and efficiently. Finally, we
provide an interpretation of our result in terms of tropical algebraic geometry as well as the
equivalence of three rather different perspective to the Kuramoto equations.

The paper is organized as follows. In section 2 we briefly review the Kuramoto model
and Kuramoto equations. Then section 3 describes a complex algebraic formulation of the
Kuramoto equations as a system of rational equations over the complex algebraic torus (C∗)n.
Recent results on the generic root count of the algebraic Kuramoto equations, known as the
adjacency polytope bound, is reviewed in section 4. We expand on this result by describing
explicit formula for a regular unimodular triangulation of the adjacency polytope in section 5.
The resulting algorithm is outlined in section 6, and section 7 describe the software imple-
mentation. Basing on this triangulation, we develop our homotopy method in section 8. In
section subsection 9.1 and subsection 9.2 we interpret our results in the broader context, and
the conclusion follows in section 10.

2. Kuramoto model and Kuramoto equations. A simple mechanical analog of the cou-
pled oscillator model (1.1) is a spring network, shown in Figure 1, that consists of a set of
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weightless particles constrained to move on the unit circle without friction or collision [8].

Figure 1. A spring network

Real numbers aij = aji characterizing the stiffness of the springs
connecting particles i and j are known as coupling strength, and
dθi
dt represents the angular velocity of the i-th particle. An im-

portant class of special configurations in which the angular ve-
locity of all particles can become perfectly aligned are known as
frequency synchronization. That is, dθi

dt = c for i = 0, . . . , n and
a constant c. By adopting a rotational frame of reference, we
can always assume c = 0. That is, frequency synchronization
configurations are equivalent to equilibria of the ordinary differ-
ential equations (1.1). As a result of the symmetry assumption
that aij = aji, the n+1 equilibrium equations must sum to zero.
This allows the elimination of one of the equations, producing
the system of n equations in n unknowns

ωi −
∑

j∈NG(i)

aij sin(θi − θj) = c, for i = 1, . . . , n.

Despite its mechanical origin, the above frequency synchronization system naturally appears
in a long list of seemingly unrelated fields, including chemistry, electrical engineering, biology,
and computer security. We refer to [8] for a detailed list.

3. Complex algebraic formulation of Kuramoto equations. With proper complexifica-
tion, the Kuramoto equations (1.2) can be reformulated as a system of Laurent polynomials
over the algebraic torus (C∗)N . This form is crucial in applying the homotopy continuation
theory. Using the identity sin(θi − θj) = 1

2i(e
i(θi−θj) − e−i(θi−θj)) where i =

√
−1, (1.2) can be

transformed into

ci −
∑

j∈NG(i)

ai,j
2i

(eiθie−iθj − e−iθieiθj ) = 0 for i = 1, . . . , N.

With the substitution xi := eiθi for i = 1, . . . , n, we obtain the system of rational equations

(3.1) FG,i(x1, . . . , xn) = ci −
∑

j∈NG(i)

a′ij

(
xi
xj
− xj
xi

)
= 0 for i = 1, . . . , n

where a′ij =
aij
2i and x0 = 1 is a constant. This system, FG = (FG,1, . . . , FG,n), is a system of

n Laurent polynomial equations in the n complex variables x = (x1, . . . , xn). In the following,
it will be referred to as the (algebraic) system of synchronization equations for a Kuramoto
model, or simply a synchronization system. Since xi’s appear in the denominator positions,
FG is only defined on the algebraic torus (C∗)n = (C \ {0})n. Clearly, each equivalence class
of real solutions of (1.2) (modulo translations by multiples of 2π) corresponds to a single
solution of (3.1) in (C∗)n.

If we consider FG as a column vector, then for any nonsingular n × n matrix R, the two
systems R · FG = 0 and FG = 0 have the exact same solution set. Therefore in the following
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we focus on the system

FRG = R · FG =

r11 · · · r1n
...

. . .
...

rn1 · · · rnn


FG,1...
FG,n


It is easy to verify that for generic choices of the matrix R, there is no complete cancellation
of the terms, and thus FRG is an (unmixed) system of the form

(3.2) FRG,k = cRk −
∑

{i,j}∈E(G)

aRijk

(
xi
xj
− xj
xi

)
for k = 1, . . . , n

where cRk and aRijk are the resulting coefficients after collection of similar terms, and none of
them are zero. This system will be referred to as the unmixed form of the synchronization
equations, and it will be the main focus of the rest of this paper.

4. Maximum and Generic Root Count. In this section we briefly review the existing
results on the generic root count of (1.2), (3.1), and (3.2).

In [1], an upper bound on the number of equilibria of the Kuramoto model (solutions
to (1.2)) induced by a graph of N vertices with any coupling strengths is shown to be

(
2N−2
N−1

)
.

This bound can be understood as a bi-homogeneous Bézout number on the algebraic ver-
sion (3.1) or (3.2): Via the map yi = x−1

i , the two systems can be translated into equiva-
lent systems that have a bi-degree of (1, 1) with respect to the partition and are defined in
((x1, . . . , xn), (y1, . . . , yn)) with the additional conditions that xiyi = 1 for i = 1, . . . , n. It is

easy to verify that the bi-homogeneous Bézout number will be
(

2n
n

)
=
(2(N−1)
N−1

)
.

Recent studies (e.g. [6]) suggest tighter bounds on the number of isolated complex solutions
may exist when the network is sparsely connected. In the cases where the underlying graph
is a cycle, a sharp bound is established in [5] using the theory of the birationally invariant
intersection index as well as a construction known as the adjacency polytope bound which we
shall review briefly here.

A polytope is a bounded intersection of finitely many closed half-spaces. The adjacency
polytope is a polytope constructed to encode the topological information of the synchroniza-
tion system (3.2). Given an undirected graph G with edge set E(G), its adjacency polytope is
defined to be

(4.1) PG = conv {ei − ej | {i, j} ∈ E(G)}

where we adopt the convention that e0 = en+1 = 0. That is, the adjacency polytope of G is
the convex hull of a set of line segments, each corresponding to an edge in G. PG is a lattice
polytope in the sense that all its vertices have integer coordinates.

The adjacency polytope bound [3] of a Kuramoto system (1.2) on the graph G is defined to
be n! vol(PG), the normalized volume of PG. This bound is an upper bound for the number of
isolated complex solutions for the systems (3.2) and (3.1). Consequently, it is also an upper
bound for the number of real solutions that the original synchronization system (1.2) has.
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In the case of a cycle graph of N nodes, i.e.,

G = CN = ({0, . . . , N − 1}, {{0, 1}, . . . , {N − 2, N − 1}, {N − 1, 0}}),

the recent paper [5] established the explicit formula N
(

N−1
b(N−1)/2c

)
for the adjacency polytope

bound. Furthermore it is shown that this bound coincides with the birationally invariant
intersection index in (C∗)n of the Kuramoto system (3.1) as a member of a family of rational
functions. In this paper, we strengthen this result by producing an explicit construction of a
unimodular triangulation of the adjacency polytope for cycle graphs and define a homotopy
method base on this triangulation.

Remark 4.1. The theory of birationally invariant intersection index [13, 14] (as well as
the general intersection theory [9] and homotopy continuation theory [16, 19]) shows that
the adjacency polytope bound is “generically exact” in the sense that if one chooses the
coefficients of the algebraic Kuramoto equations (3.1) randomly then, with probably one, the
total number of isolated complex solutions that system has is exactly the adjacency polytope
bound N

(
N−1

b(N−1)/2c
)
.

Stated more precisely, there exists a nonzero polynomial D whose variables are the coeffi-
cients {ωi} and {aij} of (3.2) such that for all choices of ωi} and {a′ij} where D 6= 0, the total
number of isolated complex roots of (3.1) are all nonsingular reaches the adjacency polytope
bound.

5. A Regular, Unimodular Triangulation of the Adjacency Polytope. A subdivision of
an n-dimensional polytope P is a collection of polytopes P1, . . . , Pk ⊆ P such that

1. dimPi = n for all i,
2. Pi ∩ Pj is either empty or a face common to both Pi and Pj , and
3. P = ∪iPi.

A triangulation, a.k.a. simplicial subdivision of a polytope is a subdivision consisting of
simplices. Furthermore, a triangulation is said to be unimodular if all the member simplices
are lattice simplices of normalized volume 1.

In order to be used in our homotopy construction, the “regularity” property of the tri-
angulation is also required. A triangulation of a polytope is said to be regular if it is the
projection of the lower facets of a lifting of the polytope into one-higher dimension. Stated
more precisely, given a polytope P = conv{v1, . . . ,vm} in Rn and and weights ω1, . . . , ωm ∈ R,
the new polytope

P ′ = conv{(vi, ωi) ∈ Rn+1 | i = 1, . . . ,m}
is a lifting of P into one-higher dimension. The projections of lower facets, that is, the facets
whose inner normal vectors have positive last entry, to the first n coordinates is called a regular
subdivision, or a regular triangulation if all facets are simplices.

For the cycle graph CN on N = n+ 1 nodes, we will construct a unimodular triangulation
for the adjacency polytope PCN

by finding and triangulating all of its facets: the faces of
codimension 1. Using the set of facets F(PCN

), a well known subdivision of PCN
can be

constructed as the set of pyramids formed by the facets and a fixed interior point as the
common apex. That is, fixing any interior point p ∈ PCN

, the set

{convF ∪ {p} | F ∈ F(PCN
)}
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forms a subdivision of PCN
. By further triangulating each facet, the above subdivision can be

refined into a triangulation of PCN
. That is, if T (F ) is a triangulation of the face F ∈ F(PCN

)
then the set

{convC ∪ {p} | C ∈ T (F ), F ∈ F(PCN
)}

for a fixed interior point p form a triangulation of PCN
. This is the strategy that we will follow

in this section. The choice of the interior point p will be the origin 0 which is an interior
point of PCN

since it is the average of ei − ej and ej − ei for all edges {i, j}.
It was shown in [5] that PCN

is unimodularly equivalent to the polytope

QN = conv{±e1, . . . ,±en,±(e1 + · · ·+ en)}

via the map x 7→ Ax, where A is the n × n matrix with 1 on and below the diagonal and 0
everywhere else. Then [5, Proposition 12] and [18, Remark 4.3] identify the facets of QN . The
geometric structure of this polytope depends on the parity of N . When N is even, the facets
can be indexed by the set

ΛN =

{
(λ1, . . . , λN ) ∈ {−1, 1}N |

N∑
i=1

λi = 0

}

and are of the form

Fλ = conv{λ1(−e1 − e2 − · · · − en), λ2e1, . . . , λNen, | λ = (λ1, . . . , λN ) ∈ ΛN}.

When N is odd, we define ΛN differently: in this case, the facets can be indexed by ΛN :=
∪Nj=1Λj,N where

Λj,N =

{
(λ1, . . . , λN ) | λj = 0, λi ∈ {−1, 1} for all i 6= j, and

N∑
i=1

λi = 0

}
,

and the facet corresponding to λ = (λ1, . . . , λN ) ∈ Λj,N is given by

Fλ = conv{λ1(−e1 − e2 − · · · − en), λ2e1, . . . , λ̂jej−1, . . . , λNen}.

Here, the notation λ̂jej−1 indicates that element is removed from the list.
From the above constructions, we can see that QN is simplicial (i.e., all the facets are

simplices) whenN is odd, but is not simplicial whenN is even. Via the unimodular equivalence
between QN and PCN

we have same characterization of the facets of PCN
. As a result of this

dichotomy, the construction of the triangulation in the even and odd N cases require very
different procedures.

Remark 5.1 (Unimodular equivalence of facets). Another important property worth noting
is that the facets of QN are all unimodularly equivalent to each other. To see this suppose
Fλ, Fλ′ are facets of QN . Then, Fλ′ = f(Fλ) where f(x) = Bλ,λ′x and Bλ,λ′ is the n × n
matrix constructed as follows: first let ` = λ1λ

′
1. For 1 ≤ i ≤ n, note that there is a unique
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j such that λi+1 is the jth instance of −1 or the jth instance of 1 in (λ2, . . . , λN ). Let `λ′k+1

be the jth instance of `λi+1 in (`λ′2, . . . , `λ
′
N ). Set row i of Bλ,λ′ to be `ek. As a result, Bλ,λ′

is a permutation matrix (up to simultaneous scaling of all entries by −1), so detBλ,λ′ = ±1,
hence f yields a unimodular equivalence.

Consider, for example, a case with N = 3 and the choices of λ = (1,−1,−1, 1) and
λ′ = (−1, 1,−1, 1). In this case, ` = λ1λ

′
1 = −1. Note that λ2 is the first instance of −1 in

(λ2, λ3, λ4). Now, −λ′2 is the first occurrence of −λ2 in (−λ′2,−λ′3,−λ′4). So, the first row of
Bλ,λ′ is −e1. Next, λ3 is the second occurrence of −1 in (λ2, λ3, λ4), and −λ′4 is the second
occurrence of −1 in (−λ′2,−λ′3,−λ′4), so the second row of Bλ,λ′ is −e3. Since λ3 is the first
occurrence of 1 in (λ2, λ3, λ4), and −λ′3 is the first occurrence of 1 in (−λ′2,−λ′3,−λ′4), we
have that the third row of Bλ,λ′ is −e2:

Bλ,λ′ =

−1 0 0
0 0 −1
0 −1 0

 .
Remark 5.2 (Point configuration). In order to be used in a homotopy construction, a

stronger triangulation is needed. Define the point set

SCN
= {0} ∪ {ei − ej | {i, j} ∈ E(CN )}

This set is known as the support of the unmixed system (3.2) as it collects the exponents (as
points) of all the terms appearing in that system. It is easy to see that PCN

= convSCN
since

0 is an interior point of PCN
(as 0 = 1

2(ei − ej) + 1
2(ej − ei)). In our constructions, we will

require all simplices in a triangulation to have vertices within the set SCN
. This is known as

a triangulation of a point configuration.

In the rest of this section, we describe the construction of regular unimodular triangulation
of PCN

in the cases with even and odd N respectively.

5.1. Even N . For the entirety of this subsection, we assume that N is even. From the
preceding discussion, we know that all of the facets of PCN

are unimodularly equivalent due
to transitivity of equivalence relations. In particular, all facets of PCN

are unimodularly
equivalent to

conv{e0 − e1, e1 − e2, . . . , ebn
2
c − ebn

2
c+1,−(ebn

2
c+1 − ebn

2
c+2), . . . ,−(en−1 − en),−en}.

Let Gλ denote the facet of PCN
obtained by applying A−1 to all points in Fλ. It will be

important to keep in mind that ±A−1(e1+· · ·+en) = ±e1. We can then produce a subdivision
of PCN

by setting

G0
λ = conv{0, Gλ}.

and ranging over all λ ∈ ΛN .
To aid us in what follows, we establish the following lemma. Recall that in Rn, we use

the convention e0 = en+1 = 0.
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Lemma 5.3. Let VN = {v0, . . . ,vN} denote the vertices of G0
λ such that

vi =

{
0 if i = 0,

λi(ei−1 − ei) if 1 ≤ i ≤ N,

When N is even, each G0
λ has exactly two triangulations:

∆+(G0
λ) = {conv{VN \ {vi}} | λi = λ1}

and
∆−(G0

λ) = {conv{VN \ {vi}} | λi = −λ1}

Moreover, both of these triangulations are regular.

Proof. Let N = 2k. Note that for each λ ∈ ΛN , dimG0
λ = n and G0

λ has n + 2 vertices.
Thus, there is a unique (up to simultaneous scaling of the coefficients) affine dependence of
the form

N∑
i=0

civi = 0

satisfying
∑
cj = 0 with c0, . . . , cn+1 ∈ R. Without loss of generality, we may choose c0 = 0

and ci = λik/N for i > 0.
The desired conclusions for the lemma then follow from [7, Lemma 2.4.2]. Specifically,

∆+(G0
λ) = {conv{V \ {vi}} | λi = λ1}

is the triangulation of G0
λ corresponding to the height vector (ω0, . . . , ωN ) where

ωi =

{
0 if ci ≤ 0,

1 if ci > 0

and
∆−(G0

λ) = {conv{V \ {vi}} | λi = −λ1}

is the triangulation corresponding to the heights

ωi =

{
0 if ci ≥ 0,

1 if ci < 0.

We will be concerned with the particular lifting function ω : SCN
→ Z given by

ω(a) =


0 if a = 0

2 if a = ±e1

1 otherwise

as this will induce the desired regular, unimodular triangulation ∆N of PCN
. To help us with

notation, we will define
Ωω(P ) = conv{ω(v) | v ∈ P ∩ SCN

}
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for any polytope P whose vertices are a subset of SCN
. If X is a collection of polytopes whose

vertices are subsets of SCN
, then we let Ωω(X) = {Ωω(P ) | P ∈ X}.

First, we identify normal vectors of simplices in Ωω(∆+(G0
λ)). Recall that a vector is

upward-pointing if its final coordinate is positive.

Lemma 5.4. Let N be even. If λ ∈ ΛN and λ1 = 1, then the upward-pointing inner normal
vectors for all simplices in Ωω(∆+(G0

λ)) are xλ = (x1, . . . , xn+1) where

xi =

{∑i
j=1 λj if 1 ≤ i < n+ 1,

1 if i = n+ 1

as well as

yλ,j = x+

j−1∑
k=1

ek

for each j > 1 such that λj = 1. If λ1 = −1, then the upward-pointing inner normal vectors
are xλ = σ(x−λ), yλ,j = σ(y−λ,j) where λj > 0 and where σ is the map that negates the first
n coordinates.

Proof. First observe that, by construction, each vector under consideration is upward-
pointing. Next, let λ1 = 1. It is then straightforward to verify that

〈x, λj(ej−1 − ej) + en+1〉 = −λ2
j + 1 = 0

for all 1 < j ≤ n + 1. Following this same process, one may verify that the hyperplane for
which yλ,j is normal contains all vertices of G0

λ except λj(ej−1 − ej).
Finally notice that if λ′ = −λ, then −T ∈ ∆+(G0

λ′
) for each cell T ∈ ∆+(G0

λ). It directly
follows that σ(xλ) and σ(yλ,j) are the upward-pointing inner normal vectors of the simplices
in ∆+(G0

λ) for all λ satisfying λ1 = −1.

Theorem 5.5. Let N be even. The height function ω : SG → Z given by

(5.1) ω(a) =


0 if a = 0,

2 if a = ±e1,

1 otherwise

induces a regular unimodular triangulation ∆N of the point configuration SCN
. Specifically,

(5.2) ∆N =
⋃

λ∈ΛN

∆+(G0
λ)

Proof. Let ∆N denote the regular subdivision of PCN
induced by ω. For λ ∈ ΛN , consider

the vectors xλ, yλ,j , σ(xλ), σ(yλ,j), as defined in Lemma 5.4. First, we focus on xλ. We have
already seen that each vertex of G0

λ except for −λ1e1 lies on the hyperplane with normal
vector x. In fact, it is straightforward to check that

〈x,−λj(ej−1 − ej) + en+1 = λ2
j + 1 > 0
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for all 1 < j ≤ n+ 1, and that

〈x,±e1 + 2en+1〉 = ±1 + 2 > 0,

so x defines a facet of Ωω(PCN
).

Following this same process, one may verify that yλ,j defines a facet containing all vertices
of G0

λ except λj(ej−1 − ej). By an argument that is symmetric in the first n coordinates,
σ(xλ) and σ(yλ,j) also defined facets of Ωω(PCN

).
Ranging over all λ ∈ ΛN , we have identified a collection of simplices C that are lower

facets of Ωω(PCN
). Projecting each C back down to Rn, we get

(5.3)
⋃

λ∈ΛN

∆+(G0
λ) ⊆ ∆N .

In fact, this set covers PCN
completely: let a ∈ PCN

. Then for some nonzero c ∈ R, ca is
on the boundary of PCN

. Thus, ca ∈ Gλ for some λ ∈ ΛN , and a ∈ G0
λ. Therefore, a ∈ C for

some cell C ∈ ∆+(G0
λ).

Together, this shows that ∆N is a triangulations of PCN
, and is the regular triangulation

induced by ω. To see that this triangulation is unimodular, recall that all simplices in ∆N are
unimodularly equivalent to the simplex whose nonzero vertices are

e0 − e1, e1 − e2, . . . , ebn
2
c − ebn

2
c+1,−(ebn

2
c+1 − ebn

2
c+2), . . . ,−(en−1 − en),−en.

Placing these vertices as the columns of a matrix, in this order, results in a lower-triangular
matrix with determinant ±1. Thus, the corresponding simplex, and therefore all simplices in
∆N , are unimodular. This completes the proof.

Remark 5.6. The direct acyclic decomposition scheme developed in [2] is equivalent to the
process of computing a regular subdivision of the adjacency polytope induced by certain 0/1
weights. It is shown that for certain graphs, this process will produced regular unimodular tri-
angulations which is desired due to their connection to primitive decomposition of a Kuramoto
network. Here, however, we can see this is not possible in general. In particular, with the aid
of Macaulay2 [11] to test all 29 = 512 possible 0/1 weight orders for PC4 , we verified that only
4 choices of weights produce a triangulation of the polytope, and of these, none are unimod-
ular. So, in then sense of bounding the heights of the lattice points of ω(PCN

) for all even N ,
using only nonnegative integer heights, to produce a regular unimodular triangulation, the ω
given in this subsection is best possible.

5.2. Odd N . For the entirety of this subsection, we assume that N is odd. Recall that in
this case, the facets of QN consist of all sets of the form

Fj,λ = conv{λ1(−e1 − e2 − · · · − en), λ2e1, . . . , λ̂jej+1, . . . , λNen}

Tracing this back to PCN
, we find that its facets are of the form

Gλ = conv{λ1(e0 − e1), . . . , ̂λj(ej−1 − ej), . . . , λN (en − eN ) | λ ∈ Λj,N}
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Set

G0
λ = conv{λi(ei − ei+1) | (λ1, . . . , λN ) ∈ Λj,N},

and let

(5.4) ∆N = {G0
λ | λ ∈ ΛN}.

By construction, since each Gλ is a simplex, ∆N is a triangulation of PCN
. It is straightforward

to check that the matrix whose columns are the nonzero vertices of G0
λ has determinant ±1

for each λ ∈ ΛN , so ∆N is a unimodular triangulation.
Now, let ω : SCN

→ Z be the height function given by

(5.5) ω(a) =

{
0 if a = 0

1 otherwise.

It is clear from this choice that the lower facets of the lifted polytope Ωω(PCN
) are of the form

conv{0, Gλ × {1}},

so their projections back onto Rn are exactly the simplices G0
λ for all λ ∈ ΛN . With this work,

we have shown the following.

Proposition 5.7. The set ∆N is a regular, unimodular triangulation of PCN
, and is induced

by the height function ω in (5.5).

We can, in fact, be more specific when identifying the lower facets of Ωω(PCN
).

Corollary 5.8. The upward-pointing inner normal vectors for Ωω(G0
λ) are x = (x1, . . . , xN )

where

xk =

{∑k
i=1 λi if i < N,

1 if i = N

for all λ ∈ ΛN .

Proof. Let Ωω(G0
λ) be a lower facet of Ωω(PCN

) for some λ ∈ Λj,N , and select a nonzero
vertex v of the facet. Since this vertex is nonzero, we know v is of the form v = λr+1(er −
er+1 + eN for some r 6= j. Then

〈x,v〉 = λr+1

(
r∑
i=1

λi −
r+1∑
l=1

λl

)
+ 1 = −λ2

r+1 + 1 = 0.

Thus, x is normal to Ωω(G0
λ).

6. Cell enumeration algorithm. In this section, we briefly summarize the algorithm for
for constructing a regular unimodular triangulation for the adjacency polytope PCN

as pro-
posed above. Here, we shall focus only on the enumeration of all the upward pointing inner
normal vectors of the lifted polytope Ω(PCN

) of the point configuration SCN
, since these are

directed used in the homotopy construction to be described in section 8. Moreover, these
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objects directly correspond to tropical stable intersections as we shall discuss in detail in sub-
section 9.2. Once a normal vector v is obtained, the vertices of the corresponding cell can be
found easily by computing the minimizing set of the linear functional 〈· , v〉.

The algorithm EnumerateNormals(N) for enumerating inner normal vectors is listed in Al-
gorithm 6.1. It takes the argument N , which is the number of nodes in the cycle graph and
produces the set of all upward pointing inner normal vectors of the lower facets of Ω(PCN

)
which are in one-to-one correspondence with the simplices in the regular unimodular triangula-
tion ∆N . It is important to note that this algorithm is pleasantly parallel since the description
of vectors associated with indices λ ∈ ΛN are independent from one another.

Algorithm 6.1 EnumerateNormals (N): Enumeration of upward pointing inner normals

Input: N ∈ Z+, N > 2.
Output: Set C of all upward pointing inner normals.
C ← ∅
for all (λ1, . . . , λn) ∈ ΛN do
for k = 1, . . . , n do
xk ←

∑k
i=1 λi

end for
xN ← 1
x← [x1, . . . , xN ]
C ← C ∪ {x}
if N is even and N > 2 then

for j = 1, . . . , n do
if λj = 1 then

y← x +
∑j−1

k=1 ek
C ← C ∪ {y}

end if
end for

end if
end for
return C

7. Software implementation. The main algorithms for generating the cells in the regular
unimodular triangulation ∆N of PCN

is implemented in an open source Python package called
kap-cycle [4] which is freely available at https://github.com/chentianran/kap-cycle. In addi-
tion to the cells, this package also produces the upward pointing inner normals corresponding
to each cell. That is, it provides all the necessary information for bootstrapping the adjacency
polytope homotopy proposed in section 8.

8. The Adjacency Polytope Homotopy for Kuramoto Equations. We now return to the
problem of find all isolated complex solutions of (3.1). Equivalently, these are the solutions
of FRCN

defined in (3.2). Utilizing the unimodular regular triangulation of the adjacency
polytope PCN

, in this section we describe a specialized polyhedral homotopy [12] construction
for locating all of these complex solutions.

https://github.com/chentianran/kap-cycle
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Consider the function HCN
: Cn×C→ Cn with HCN

(x, t) = (HCN ,1, . . . ,HCN ,n) given by

(8.1) HCN ,k(x1, . . . , xn, t) = cRk −
∑

{i,j}∈E(CN )

aRijk

(
xi
xj
− xj
xi

)
tωij for k = 1, . . . , n

where ωij = ω(ei − ej) as given in (5.1) or (5.5) depending on the parity of N . Clearly,
HCN

(x, 1) = FRCN
(x). As t varies strictly between 0 and 1 within the interval [0, 1], HCN

(x, t)

represents a smooth deformation of the system FRCN
. We shall show that under this defor-

mation, the corresponding complex roots also vary smoothly. Thus, the deformation forms
smooth paths reaching the complex roots of FRCN

and, equivalently, that of the algebraic
synchronization system FCN

.

Proposition 8.1. For generic choices of {ci}ni=1 and {a′ij}{i,j}∈E(CN ), the solution set of

HCN
(x, t) = 0 within Cn × (0, 1) consists of N

(
N−1

b(N−1)/2c
)

smooth curves that are smoothly

parametrized by t ∈ (0, 1), and the limit point of these curves as t→ 1 are precisely the isolated
complex solutions of FCN

(x) = 0.

Proof. As proved in [5], for generic choices of {ci}ni=1 and {a′ij}{i,j}∈E(CN ), the system

HCN
(x, 1) ≡ FRCN

is in general position with respect to the adjacency polytope bound, i.e., it
has the maximum number of isolated complex solutions. Therefore, without loss of generality,
we can assume the choices of aRijk and cRk for k = 1, . . . , n and {i, j} ∈ E(CN ) in (8.1) are
generic, that is, H(x, 1) is in general position with respect to the adjacency polytope bound.

Also note that for any t 6= 0, H(x, t) is has the same form as (3.2) since the effect of t is
only scaling the coefficients. We shall show that H(x, t) remains a generic member of (3.1)
for all t ∈ (0, 1] and hence the all complex solutions of H(x, t) = 0 (as a system in x only) are
isolated and the total number matches the adjacency polytope bound N

(
N−1

b(N−1)/2c
)
.

As noted in Remark 4.1, the genericity condition is characterized by an algebraic function
D, the discriminant, which is a polynomial in the coefficients {cRi }ni=1 and {aRijtωij}{i,j}∈E(CN ),
and F (x) = HCN

(x, t) is generic with respect to the adjacent polytope bound precisely when
D 6= 0. Consider the univariate polynomial

g(t) = D((cRi )ni=1, (a
R
ijt

ωij ){i,j}∈E(CN )).

By our genericity assumption, g(1) 6= 0, and therefore the polynomial g(t) cannot be the zero
polynomial. It then has finitely many zeros within the unit disk of C, say, r1e

τ1 , . . . , r`e
τ` for

some ` ∈ Z+.
Picking a real value τ ∈ [0, 2π] such that τ 6= τk for k = 1, . . . , ` will ensure g(eτ t) 6= 0 for

all t ∈ (0, 1). But g(eτ t) describes the discriminant condition for the system

HCN ,i(x1, . . . , xn, e
τ t) = cRi −

∑
{i,j}∈E(CN )

(aRije
ωijτ )

(
xi
xj
− xj
xi

)
tωij ,

which implies HCN ,i(x, e
τ t) is in general position for all t ∈ (0, 1).

Notice that the map τ 7→ eωijτ is finite-to-one, and the map aRij 7→ eωijτ is a nonsingular

linear transformations on the coefficients aRij which preserves genericity. Thus we can conclude
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that for generic choices of aRij and cRi , HCN
(x, t) will be in general position over the entire

t-interval of (0, 1).
This shows that at any fixed t ∈ (0, 1), all solutions of H(x, t) = 0 in Cn are isolated and

the total number is exactly the adjacency polytope bound N
(

N−1
b(N−1)/2c

)
. A direct application

of the homotopy continuation theory is then sufficient to establish that the solution set of
H(x, t) = 0 in Cn × (0, 1) forms paths that are smoothly parametrized by t. Furthermore, by
continuity, the limit points of these paths as t → 1 must be all the solutions of FRCN

(x) = 0
which is identical to that of FCN

(x) = 0.

The equationHCN
(x, t) = 0 defines finitely many smooth paths in Cn×(0, 1) reaching all of

the isolated complex solutions of the target synchronization system FCN
(x) = 0. The starting

point of these paths at t = 0, however, cannot be determined directly since HCN
(x, 0) =

(c1, . . . , cn) which has no root in Cn. This obstacle is surmounted via a technique similar to
the main construction in polyhedral homotopy [12].

Recall that ∆N is the set of cells forming the unimodular triangulation of the adjacency
polytope PCN

(defined in (5.2) or (5.2) depending on the parity of N). For each cell T ∈ ∆N ,
we define the subset of (directed) edges

E(T ) = {(i, j) ∈ E(G) | ei − ej ∈ T}.

Here, we do not assume the symmetry of edges, i.e., (i, j) ∈ E(T ) does not imply (j, i) ∈ E(T ).
Define the cell system FT = (FT,1, . . . , FT,n) associated with the cell T ∈ ∆N given by

(8.2) FT,k(x) = cRk −
∑

(i,j)∈E(T )

aRijk
xi
xj

for k = 1, . . . , n.

This system can be considered as a subsystem of the unmixed synchronization system (3.2) in
the sense that it involves a subset of the terms in that system: only those terms corresponding
to points in T . Indeed, T is exactly the Newton polytope of the corresponding cell system.

Remark 8.2. The cell systems defined here are refinements of the facet systems studied
in [2]. Indeed, for odd N , they are exactly the facet systems since each T ∈ ∆N is the convex
hull of a facet of the adjacency polytope PCN

together with the origin. For even N values,
however, the cell systems will be significant refinement of facet systems defined in [2]. This
distinction will be explained in detail in subsection 9.1.

Here, each cell T ∈ ∆N is a full-dimensional lattice simplex with normalized volume 1 (a
primitive simplex). From classical theory from toric algebraic geometry, we can deduce that
the corresponding cell system has a unique solution.

Lemma 8.3. For generic choices of {ci}ni=1 and {a′ij}{i,j}∈E(CN ), each system of Laurent
polynomial equations FT (x) = 0 for T ∈ ∆N has a unique complex solution, and this solution
is isolated and nonsingular.

With this result, we construct a modification of the of the homotopy (8.1) that will
define a solution path that starts from the unique solution of the cell system FT . This is
essentially a specialized polyhedral homotopy [12] construction using the triangulation found
in the previous section.
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Definition 8.4 (Adjacency polytope homotopy). For each cell T ∈ ∆N , let (α1, . . . , αn, 1) ∈
Rn+1 be the associated upward pointing inner normal vector as given in Lemma 5.4 and Corol-
lary 5.8. We define the adjacency polytope homotopy induced by this cell as the function
HT = (HT,1, . . . ,HT,n) : Cn × [0, 1] given by

(8.3) HT,k(y, t) = HCN ,k(y1 t
α1 , . . . , yn t

αn).

Recall that the collection of cells in ∆N form a regular triangulation of the adjacency
polytope PCN

which is also the Newton polytope of (3.2) By applying the construction of un-
mixed form of polyhedral homotopy [12], we obtain the desired result: A homotopy construc-
tion that can be used to locate all isolated complex solution of the algebraic synchronization
equation (3.1).

Theorem 8.5. For generic choices of {ci}ni=1 and {a′ij}{i,j}∈E(CN )

1. The solution set of HT = 0 within Cn×(0, 1) consists of a finite number of smooth
paths parametrized by t, and the limit point of these paths as t → 1 are precisely
the isolated solutions of FCN

(x) = 0 in Cn.
2. Among them, there is a unique path CT (t) whose limit point CT (0) = limt→0+ CT (t)

is the unique solution of FT (x) = 0.
3. The set of end points {CT (1) | T ∈ ∆N} of paths induced by all cells is exactly

the isolated C-solution set of FCN
(x) = 0.

Remark 8.6. From the viewpoint of numerical analysis, the stability of a homotopy for-
mulation is a deep and complex problem that is outside the scope of this paper. Here we only
comment one distinct advantage of the adjacency polytope homotopy over a direct application
of polyhedral homotopy method.

In practical implementations of polyhedral homotopy, it is well known that the distribution
of the exponents of the t parameter in the homotopy plays a crucial role in the numerical
stability of the homotopy algorithm [10]. In particular, if the exponents of t spread over a
wide range, the problem of tracking the homotopy paths can become extremely ill-conditioned
and standard algorithms for path tracking become unstable. While many techniques have been
developed to deal with this issue. It is clearly best if this problem can be avoided in the first
place. In our construction, the exponents of t in both (8.1) and Definition 8.4 involve small
integers, this ensures that the exponents of t in HT (y, t) consist of only small positive integers
for relatively small N values.

9. Interpretations. In this section we interpret our main results in a wider context and
draw connections to closely related problems. Even though the main goal is to construct an
efficient homotopy method for locating complex synchronization configurations for Kuramoto
networks supported on cycle graphs, we shall show that our construction actually provides
explicit solutions to other problems: the direct acyclic decomposition of cycle Kuramoto
networks, and the self-intersection of a tropical hypersurface.

9.1. Direct acyclic decomposition of cycle networks. In the recent work [2], a general
scheme is proposed to decompose a Kuramoto network into smaller subnetworks supported by
direct acyclic graphs while preserve certain properties of the synchronization configurations.
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This scheme utilize the geometric properties of the adjacent polytope. Indeed, the subnetworks
are in one-to-one correspondence with the facets of the adjacency polytope.

In this context, the constructions proposed in this paper provide two important improve-
ment to that decomposition scheme. First, the regular unimodular triangulation of the adja-
cency polytope PCN

gives rise to a significant refinement for the direct acyclic decomposition
scheme which will decompose a cycle network into “primitive” subnetworks. This was not
possible for even N values with the original decomposition scheme. Second, as the starting
system induced by the adjacency polytope homotopy (8.1) can be reduced into binomial sys-
tems and hence can be solved easily and efficiently. Finally, since the explicit formula for the
generic root count is known (section 4), the number of solution paths induced by the homo-
topy proposed in section 8 matches the generic root count exactly, and thus will not produce
extraneous solution paths in the generic situation. This feature was not established in the
original decomposition scheme and the associated homotopy construction.

To see the regular unimodular triangulation described in section 5 give rises to a decom-
position of the Kuramoto network, we first define the subnetwork corresponds to a cell.

Definition 9.1 (Directed acyclic subnetwork). Let ∆N be the regular unimodular triangula-
tion of PCN

defined in (5.2) and (5.4). For each cell T ∈ ∆N , we define the directed acyclic
subnetwork associated with T to be the graph ({0, . . . , N − 1}, E(T )) where

E(T ) = {(i, j) ∈ E(CN ) | ei − ej ∈ T}.

This is a refinement of the definition given in [2] where subnetworks correspond to facets
of the adjacency polytope. In contrast, subnetworks defined above come from a triangulation
which, in the case of even N values, are associated with simplices in the facets of PCN

.
As established in [2], such a subnetwork associated with a cell is always an acyclic graph

which justifies its name (directed acyclic subnetwork). Moreover, such subnetworks are of the
simplest possible form known as “primitive” subnetworks.

Definition 9.2 (Primitive directed acyclic subnetwork). A subnetwork associated with a cell,
as defined above, is said to be primitive if it contains exactly n = N − 1 directed edges.

Note that since each cell T ∈ ∆N is a simplex of dimension n and contains exactly n
nonzero points of the form ei − ej for i 6= j, we can see the induced subnetwork must be
primitive.

Proposition 9.3. Let ∆N be the regular unimodular triangulation of PCN
. For each cell

T ∈ ∆N , the associated directed acyclic subnetwork is primitive.

Figure 2 shows the direct acyclic subnetworks of a cycle network with 4 nodes induced
by the triangulation ∆N . Clearly, all subnetworks are primitive. In contrast, the original
decomposition scheme for the same network, as shown in Figure 3, produces subnetworks that
are not primitive.

9.2. A tropical interpretation. Even though it was not stated explicitly, the procedure
that resulted in the adjacency polytope homotopy (8.1) is actually rooted from tropical alge-
braic geometry [17]. In this section, we provide the interpretation from the tropical viewpoint.
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Figure 2. Direct acyclic subnetworks of a cycle network with 4 nodes induced by the most refined decompo-
sition scheme developed in this paper. Every subnetwork is primitive. This is to be compared with the original
coarser decomposition scheme shown in Figure 3

Recall that we started with the unmixed form of the algebraic synchronization equa-
tion (3.2). If we consider the valuation on the field of coefficients given by

val(cRi ) = 0 and val(aRijk) =

{
2 if N is even and (i, j) = (1, 0)

1 otherwise,
(9.1)

which mirrors the choices of the weights given in (5.1) and (5.5), then the tropicalization of
the n polynomials in (1.1) are identical and they define a common tropical hypersurface. The
main results developed in section 5 can thus be interpreted tropically: The valuation defined
above induces the simplest (stable) self-intersection.

Proposition 9.4. Let h = trop(FRCN ,k
) for k = 1, . . . , n be the tropicalization of (3.2) with

respect to the valuation given in (9.1). Then the tropical hypersurface defined by h has exactly
N
(

N−1
b(N−1)/2c

)
self-intersection points, and each intersection is of multiplicity one.

As discussed in Remark 5.6, the special choice of the valuation (9.1) is an important
condition for this result to hold. Using only 0-1 valuations, for example, will not produce self-
intersections with multiplicity one. One of the key contribution of this paper is the explicit
formula for these self-intersection points. These tropical self-intersection points are precisely
the tropicalizations of the curves defined by (8.1).
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Figure 3. Direct acyclic subnetworks of a cycle network with 4 nodes induced by the coarser decomposition
scheme originally proposed in [2]. None of the subnetworks are primitive.

9.3. Equivalence of interpretations. With the above interpretations, we have the equiv-
alence of three important class of problems from different context, as shown in Table 1. This
connection, especially the connection between regular subdivision of adjacency polytope and
direct acyclic decomposition was first proposed in [2]. In this paper, we further refine this
idea and provided explicit answers for problems in the bottom row of Table 1 in the cases of
cycle networks.

Adjacency polytope Kuramoto network Tropical hypersurface

Regular subdivision Directed acyclic decomposition Stable self-intersections

Regular unimodular
triangulation

Directed acyclic decomposition
into primitive subnetworks

Stable self-intersections
with multiplicity one

Table 1
The 3-way dictionary that translates equivalent concepts among the three different points of view.

10. Conclusions. Following the volume computation result in [5], this paper aims to
deepen the geometric understanding of adjacency polytopes associated to a cycle Kuramoto
network and use these geometric information to explore three different aspects of Kuramoto
equations:

1. To create an efficient polyhedral-like homotopy algorithm for solving Kuramoto
equations;

2. To explicitly describe direct acyclic decompositions of Kuramoto networks into
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primitive subnetworks; and
3. To understand the stable intersections of the tropical hypersurfaces defined by

Kuramoto equations.
First, we derived the explicit formula for a regular unimodular triangulation of the ad-

jacency polytope PCN
associated to a cycle graph of N nodes for any N > 2. This greatly

strengthens the results from [5] where only the normalized volume of PCN
is known.

Then, using this regular unimodular triangulation, we develop a homotopy continuation
algorithm that is similar to the well established polyhedral homotopy method but has the
distinct advantage that it completely sidesteps the costly mixed volume/cells computation
step. This homotopy is also a significant improvement over the direct acyclic homotopy
proposed in [2] since this homotopy deforms the Kuramoto system into simplest possible
subsystems each having a unique solution. From the computational viewpoint, the proposed
homotopy also offers important advantages in numerical conditions, efficiency, and scalability
as discussed in Remark 8.6.

The third contribution of this paper is a significantly refined version of the direct acyclic
decomposition scheme originally proposed in [2]. The regular unimodular triangulation pro-
posed here induces a decomposition of a cycle Kuramoto network into the smallest possible
components known as primitive subnetworks. Primitive subnetworks are of great value since
they each have a unique complex synchronization configuration which can be computed easily
and efficiently. This is to be compared with the situation of the original decomposition scheme
where the resulting subnetworks, in general, may not be primitive.

Finally, we showed the significance of our results in the context of tropical geometry. In
particular, we produced explicit formula for all stable intersections of the tropical hypersur-
faces defined by the unmixed form of the Kuramoto system under a special choice of the
valuation. This valuation induces particularly nice tropical intersections as we shown that
every intersection point is of multiplicity 1.
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