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Abstract. Symmetric edge polytopes, a.k.a. PV-type adjacency polytopes, associated
with undirected graphs have been defined and studied in several seemingly independent
areas including number theory, discrete geometry, and dynamical systems. In particular,
the authors are motivated by the study of the algebraic Kuramoto equations of unmixed
form whose Newton polytopes are the symmetric edge polytopes.

The interplay between the geometric structure of symmetric edge polytopes and the topo-
logical structure of the underlying graphs has been a recurring theme in recent studies. In
particular, “facet/face subgraphs” have emerged as one of the central concepts in describing
this symmetry. Continuing along this line of inquiry we provide a complete description of the
correspondence between facets/faces of a symmetric edge polytope and maximal bipartite
subgraphs of the underlying connected graph.

1. Introduction

For a simple connected graph G with nodes V(G) = {1, . . . , N} and edge set E(G), its
symmetric edge polytope [17] (a.k.a. PV-type adjacency polytope [4]) is the convex polytope
conv{±(ei − ej) | {i, j} ∈ E(G)} where e0 = 0 and ei is the ith standard basis. In the
context of Kuramoto models [16], the geometric structure of such polytopes has been instru-
mental in understanding the root count for algebraic Kuramoto equations [5, 6, 16]. In the
broader context, they have been studied by number theorists, combinatorialists, and discrete
geometers motivated by several seemingly independent problems [10, 13, 14, 17, 18, 19, 20].
These viewpoints are consolidated in recent work by D’Al̀ı, Delucchi, and Micha lek [9] which,
among other contributions, sheds new light on the structure of symmetric edge polytopes
of bipartite graphs, cycles, wheels, and graphs consisting of two subgraphs sharing a single
edge. Using Gröbner basis methods, they provided explicit formulae for the number of facets
and the volume of the symmetric edge polytopes associated with several classes of graphs.

One recurring theme in these recent works is the symmetry between the geometric struc-
ture of symmetric edge polytopes and topological structure of the underlying graphs. In
particular, the concept of “facet/face subgraphs” is defined and studied [3, 9]. The present
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work is a continuation along this line of research. The main contributions of this paper
include the following descriptions of the correspondence between faces of a symmetric edge
polytope and face subgraphs of the underlying connected simple graph:

• Connected face subgraphs are exactly the maximal bipartite subgraphs in their cor-
responding induced subgraphs. (Theorem 3 part (1))
• Facet subgraphs are exactly the maximal bipartite subgraphs. (Theorem 3 part (2))
• The map from facets to facet subgraphs is surjective but not injective: each facet

subgraph corresponds to an equivalence class of facets and each can be described
as an assignment of edge orientations for the cut-set induced by the bipartite facet
subgraph. From the view point of cut-set vectors, we provide a complete description
of the equivalence class of facets corresponding to a given facet of the symmetric edge
polytope, i.e., the fiber over a given facet subgraph. (Theorem 9)
• We establish equivalences between geometric properties of faces and topological prop-

erties of the corresponding face subgraphs. (Theorem 12)
• Armed with these results, we compute the number of facets of a symmetric edge

polytope derived from a graph formed by joining an even and an odd cycle along a
shared edge, generalizing a recent result of D’Al̀ı, Delucchi, and Micha lek [9].

This paper is structured as follows. Section 2 states necessary definitions and notation.
Section 3 reviews the construction of symmetric edge polytopes and face subgraphs. Sec-
tion 4.1 provides a brief overview of existing results on the interplay between facets/faces of
symmetric edge polytopes and their corresponding subgraphs. Then, in Sections 4.2 to 4.5,
we develop the main results. Section 5 illustrates how these results apply to a concrete class
of non-bipartite graphs. Appendix A highlights the important implications of the results in
the study of Kuramoto equations from dynamical systems and electrical engineering.

2. Preliminaries and notation

All graphs we consider will be simple. For a graph G, let V(G) and E(G) denote its sets
of nodes and edges respectively. We say G is trivial if |V(G)| ≤ 1. A graph H is a subgraph
of G, and use the notation H ≤ G, if V(H) ⊆ V(G) and E(H) ⊆ E(G). The edge connecting
i and j is denoted {i, j} or i↔ j. A graph is bipartite if it is 2-colorable; equivalently, if it
has no odd cycles. By a maximal bipartite subgraph H of G, we mean a subgraph of G that
is bipartite and inclusion-maximal. Such subgraphs are necessarily connected and spanning
(i.e., V(H) = V(G)). For a subset V ⊆ V(G), the induced subgraph G[V ] is the subgraph
consisting of all edges {i, j} ∈ E(G) where both i, j ∈ V . With respect to a spanning tree
T of a connected graph G, a fundamental cycle of G is the unique cycle formed by an edge
outside T and a path in T . For a digraph ~G, the arrowhead emphasizes the distinction
between ~G and its underlying undirected graph G. A directed edge, called an arc, from i
to j is denoted (i, j), and we use the notation (i, j)−1 = (j, i). The converse of ~G, which

reverses the orientation of all its edges, is denoted ~G−1.
A point configuration X = {x1, . . . ,xm} ⊂ Rn is a finite collection of distinct points.

Its (affine) dimension is the dimension of the smallest affine subspace containing X. A
nonempty face of X is a subset of X for which a linear functional 〈 · , α 〉 is minimized. In
this case, α is an inner normal of the face. The emptyset ∅ is also a face of X. Note
that faces are themselves point configurations. The 0-dimensional faces are vertices and
maximal proper faces are facets. The set of all facets of X is denoted by F(X). We say X
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is (affinely) dependent if there are λ1, . . . , λm ∈ R, not all zero, with
∑m

i=1 λi = 0 such that∑m
i=1 λixi = 0. Otherwise, it is (affinely) independent. Call X a simplex if |X| = dim(X)+1

and a circuit if it is an inclusion-minimal dependent set. Its corank 1 is |X| − dim(X) − 1;
Its convex hull conv(X) = {

∑m
i=1 λixi | λ1, . . . , λm ≥ 0,

∑m
i=1 λi = 1} is a convex polytope.

3. Symmetric edge polytopes

For a connected graph G with nodes V(G) = {1, . . . , N}, its symmetric edge polytope [9, 17]
is the convex polytope conv{±(ei − ej) | {i, j} ∈ E(G)} ⊂ RN , where ei ∈ RN is the vector
with 1 in the i-th entry and zero elsewhere. Since we are mostly interested in combinatorial
aspects of symmetric edge polytopes, it is more convenient to focus on the underlying point
configuration. We define

∇̌G = {±(ei−1 − ej−1) | {i, j} ∈ E(G)} ⊂ Rn = RN−1 and

∇̄G = {±(ei − ej) | {i, j} ∈ E(G)} ⊂ RN

with the convention that e0 = 0. These two point configurations have the same intrinsic
geometric properties, and they only differ in the ambient space in which they are embedded:
∇̌G is a full-dimensional point configuration in RN−1 whereas ∇̄G is a codimension-1 point
configuration in RN , and ∇̌G is precisely the projection of ∇̄G onto the last N−1 coordinates.
The check mark notation in ∇̌G is a reminder that it is a projection to a lower-dimensional
subspace. We also extend this notation to their subsets, e.g., we identify any subset X ⊆ ∇̄G

with its projection X̌ ⊆ ∇̌G. When describing subsets of ∇̌G or ∇̄G, the “codimension” of a
subset always refers to the codimension relative to ∇̌G or ∇̄G themselves, regardless of the
ambient space. The projection that maps ∇̄G to ∇̌G is a unimodular equivalence between the
two configurations, and the two are simply different embeddings of the same polytope into
the Euclidean space. The distinction between the two will not be relevant when referencing
intrinsic geometric properties, in which case we will simply use ∇G.

In Ref. [12], Higashitani extended this construction to digraphs: for a digraph ~G, we define

∇̌ ~G = {ei−1 − ej−1 | (i, j) ∈ E(~G)} ⊂ RN−1 and

∇̄ ~G = {ei − ej | (i, j) ∈ E(~G)} ⊂ RN .

Here, ei − ej ∈ ∇̄ ~G no longer implies ej − ei ∈ ∇̄ ~G, thus conv(∇̄ ~G) may not be a symmetric

edge polytope. The notation ∇̌G, ∇̄G and ∇̌ ~G, ∇̄ ~G extend naturally to subgraphs of G and

subdigraphs of a digraph ~G, respectively, by restriction.
By construction, 0 is always an interior point of conv(∇̌G), which allows the inner normals

to be normalized to the following certain form.

Lemma 1. For a connected nontrivial graph G, a nonempty subset F ( ∇̌G is a face if and
only if there is a nonzero vector α̌ ∈ Rn such that

〈x , α̌ 〉 = −1 for any x ∈ F, and

〈x , α̌ 〉 > −1 for any x ∈ ∇̌G \ F

1Here, the term “corank” is not to be confused with the different possible notions of corank in matroid
theory – what we are calling “corank” is what a matroid theorist would call “nullity”.
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The same description extends to inner normals for faces of ∇̄G since each inner normal
of ∇̄G projects down to an inner normal of ∇̌G, and each inner normal of ∇̌G lifts to an
equivalence class of inner normals of ∇̄G.

4. Facets, faces, and associated subgraphs

Faces and facets of a symmetric edge polytope have been studied from several different
viewpoints [9]. We continue this line of inquiry through a graph-theoretical approach. The
central theme of this paper is the interplay between combinatorial properties of faces of ∇G

and graph-theoretic properties of subgraphs of G through the connection of face subgraphs.
Throughout this section, we fix G to be a nontrivial, connected, and simple graph.

Definition 2. For a nonempty subset X ⊆ ∇̄G, we define ~GX and GX to be the subgraphs
with node and edge sets

V(~GX) = {i | ei − ej ∈ X or ej − ei ∈ X for some j}

E(~GX) = { (i, j) | ei − ej ∈ X}
V(GX) = {i | ei − ej ∈ X or ej − ei ∈ X for some j}
E(GX) = { {i, j} | ei − ej ∈ X or ej − ei ∈ X},

respectively. If F is a face (resp. facet) of ∇G, then ~GF is the face (resp. facet) subdigraph
associated with F , and GF is the associated face (resp. facet) subgraph.

These concepts are defined and studied in recent works [3, 9]. The notational conventions

are chosen to mirror the connection between ~G and ∇ ~G, and they interact in an expected

way: for any X ⊆ ∇G, we have ∇ ~GX
= X, and for any subgraph ~H ≤ ~G, we have ~G∇ ~H

= ~H.

Note that points in X are exactly the columns in the incidence matrix of ~GX , which will
be denoted by Q(~GX). The truncated incidence matrix Q̌(~GX), obtained by removing the

first row of Q(~GX), corresponds to points in the projection X̌ ⊂ ∇̌G.
Face and facet subgraphs were studied in Refs. [9, 11, 13]. Section 4.1 reviews recent results

on the interplay between facets and their corresponding subgraphs. Then, in Sections 4.2
to 4.5, we develop the main results. In particular, we provide a complete description of facet
and face subgraphs as well as the equivalence classes of facet subdigraphs. Implications of
these results in algebraic Kuramoto equations are highlighted in Appendix A.

4.1. Recent results on facets and facet subgraphs. Facets of ∇G associated with even
cycles are described from the viewpoint of Ehrhart theory by Ohsugi and Shibata [19] and
from the viewpoint of Lipschitz polytope by Gordon and Petrov [11]. Explicit descriptions
of the facets of ∇G, when G is a tree or cycle, are also established [6]. Using Gröbner basis
methods, D’Al̀ı, Delucchi, and Micha lek [9] provided more detailed descriptions for the faces
of∇G. In particular, they showed that unimodular simplices contained in a facet F ∈ F(∇G)
correspond to spanning trees of GF [13, Corollary 3.3], and for a connected bipartite graph
G, the total number of facets is bounded by 2|V(G)|−1. This bound is exact if G is a tree.
Indeed, in this special case, the numbers of faces of any dimension are offered by Delucchi
and Hoessly [10]. In Section 4.4, we provide graph-theoretic refinements to these results.

For an even cycle C2k, the number of faces of each dimension of ∇C2k
, is also computed

in [9, Proposition 30]. Moreover, if G1 and G2 are both connected bipartite graphs, and
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G is formed by identifying an edge of G1 with an edge of G2, then it has been shown that
|F(∇G)| = 1

2
f1f2 where f1 = |F(∇G1)| and f2 = |F(∇G2)| [9, Proposition 37]. This result

can be applied recursively and extended to graphs formed by joining multiple even cycles
consecutively by an edge [9, Corollary 38]. We will extend these to non-bipartite graphs.

4.2. Characterizing face and facet subgraphs. Our goal is to clarify the structure of
the map F 7→ GF between facets and faces of ∇G and subgraphs of G. We first show that
connected face and facet subgraphs associated with faces and facets of ∇G are exactly the
maximal bipartite subgraphs of induced subgraphs of G (Theorem 3). In particular, the map
F 7→ GF is a surjective map from F(∇G) to the set of maximal bipartite subgraphs of G.
Corollary 4 generalizes this description to components of face subgraphs.

Theorem 3. Let H be a nontrivial connected subgraph of G.

(1) H is a face subgraph of G if and only if it is a maximal bipartite subgraph of G[V(H)].
(2) H is a facet subgraph of G if and only if it is a maximal bipartite subgraph of G.

Note that part (2) of this theorem can be derived from [14, Theorem 3.1], which provides
a general description of facet-defining labels for nodes in G. Here, we provide an alternative
derivation as a special case of part (1).

Proof. First, note that facet subgraphs and maximal bipartite subgraphs are necessarily
connected, nontrivial, and spanning, therefore part (2) is a special case of part (1). If F 6= ∅
is a proper face of ∇̄G, then, by Lemma 1, there exists an α ∈ {1}⊥ ⊂ RN such that

〈x , α 〉 = −1 for all x ∈ F and 〈x , α 〉 > −1 for all x ∈ ∇̄G \ F.
To show GF is bipartite, suppose i1 ↔ · · · ↔ i` ↔ i1 is a cycle in GF . Then there are
λ1, . . . , λ` ∈ {±1} such that λj(eij −eij+1

) ∈ F for j = 1, . . . , ` with i`+1 = i1. By the above,〈
λj(eij − eij+1

) , α
〉

= −1 i.e.,
〈

eij − eij+1
, α
〉

= −λj for j = 1, . . . , `.

Summing both sides over all j produces

0 = 〈0 , α 〉 =

〈∑̀
j=1

eij − eij+1
, α

〉
= −

∑̀
j=1

λj.

Since λj ∈ {±1}, ` must be even, i.e., any cycle in GF must be even, and GF is bipartite.
To show GF is a maximal bipartite subgraph of G[V(GF )], consider a spanning tree T

of GF , which is necessarily a spanning tree of G[V(GF )]. If B is a bipartite graph such
that GF < B ≤ G[V(GF )], then any edge {i, i′} ∈ E(B) \ E(GF ) is also outside T . The
fundamental cycle formed by {i, i′} and the unique path i = i1 ↔ · · · ↔ i` = i′ in T
is contained in B and hence must be an even cycle. That is, ` is even. Since the path
i1 ↔ · · · ↔ i` is in T ≤ GF , there are λ1, . . . , λ`−1 ∈ {±1} such that λj(eij − eij+1

) ∈ F for
j = 1, . . . , `− 1. As in the paragraph above,

〈 ei − ei′ , α 〉 =

〈
`−1∑
j=1

(eij − eij+1
) , α

〉
= −

`−1∑
j=1

λj.

Also, by Lemma 1, 〈±(ei − ei′) , α 〉 = ∓
∑`−1

j=1 λj ≥ −1. Recall that λj ∈ {±1} and ` is even.

So either 〈+(ei − ei′) , α 〉 or 〈−(ei − ei′) , α 〉 must be −1, and hence either +(ei − ei′) or
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−(ei−ei′) is also contained in F . This implies {i, i′} ∈ E(GF ), contradicting our assumption.
Therefore, GF is a not contained in any larger bipartite subgraphs of G[V(GF )].

For the converse, suppose a connected subgraph B ≤ G is a maximal bipartite subgraph
of G[V(B)] with the partition V(B) = V+ ∪ V−. Define α = (α1, . . . , αN) with

αi =


+1/2 if i ∈ V+

−1/2 if i ∈ V−
0 otherwise.

Then

〈 ei − ej , α 〉 =


0 if i, j ∈ V+ or i, j ∈ V− or i, j 6∈ V+ ∪ V−
±1 if i ∈ V± and j ∈ V∓
±1/2 if exactly one of i, j is in V+ ∪ V−

for any i, j ∈ V(G). In particular, since V+ and V− partition the nodes of B, which is
bipartite, 〈 ei − ej , α 〉 = ±1 for every {i, j} ∈ E(B).

Let

F = {ei − ej | 〈 ei − ej , α 〉 = −1}.
The linear functional 〈 · , α 〉 attains its minimum over ∇G on F , and thus F is a face of
∇G. Moreover, GF is a bipartite subgraph of G[V(B)] that contains B. But B is assumed
to be a maximal bipartite subgraph of G[V(B)], so B = GF , i.e., B is a face subgraph. �

1

2

3

4

Figure 1. A discon-
nected face subgraph.

The connectedness condition in Theorem 3 is important as dis-
connected face subgraphs may not be maximal bipartite subgraph
of their associated induced subgraphs. For example, Figure 1 shows
a face subgraph associated with the 4-cycle G = C4, which is not
a maximal bipartite subgraph of its associated induced subgraph
G[{1, 2, 3, 4}] = G. Nonetheless, the argument still applies to indi-
vidual connected components of a face subgraph. From this obser-
vation we can derive the following generalization.

Corollary 4. Let F be a face of ∇G. Then each connected compo-
nent H of GF is a maximal bipartite subgraph of G[V(H)]. �

The proof of Theorem 3 also shows that for a maximal bipartite subgraph, there is a
canonical choice of edge orientations that defines a facet subdigraph and hence a facet.

Corollary 5. For a maximal bipartite subgraph B ≤ G with the partition V(B) = V+ ∪ V−,

F = {ei − ej | {i, j} ∈ E(B), i ∈ V− and j ∈ V+}

is a facet of ∇̄G, defined by the facet inner normal α = (α1, . . . , αN)> with

αi =

{
+1/2 if i ∈ V+

−1/2 if i ∈ V− ,

and the associated facet subdigraph is the digraph with edges set

E(~GF ) = {(i, j) | {i, j} ∈ E(B), i ∈ V−, j ∈ V+}.
6



The choice of the labels V+ and V− is, of course, arbitrary: permuting the two will result in

the facet −F defined by −α associated with the facet subdigraph ~B−1. This partition defines
a unique cut-set, which is the set of edges that go across the partition. The construction in
the above corollary can be interpreted as a special type of cut-set.

Remark 6. For a maximal bipartite subgraph B ≤ G, the canonical choice of edge orienta-
tions that produces ~B in Corollary 5 are exactly the edge orientation assignments that ensure
the cut-set (which includes all edges in B) has a uniform direction across the cut (V+, V−)

of B, i.e., all arcs of ~B are from V− to V+. Such an assignment will be referred to as a
canonical edge orientation for B as well as its spanning subgraphs.

4.3. Cyclic constraints on facet subdigraphs. Theorem 3 shows that the map F 7→ GF

is a surjective map from F(∇G) to the set of maximal bipartite subgraphs of G. However,
this map is not injective. Indeed, as clarified in Corollary 5, there is at least a pair of
canonical choices of facets F and −F associated with a given maximal bipartite subgraph
B of G which correspond to cut-sets having either of the two uniform directions. In general,
if we let V+ ∪ V− = V(B) = V(G) be the partition in B, then each facet F ∈ F(∇G) such
that GF = B can be described as an assignment of edge orientations for the cut-set induced
by the cut (V+, V−) in B. However, not every such assignment will produce a facet of ∇G.
The constraints on such assignments has been studied in [11, Section 6] from the viewpoint
of metric spaces. In the following, we describe constraints on the possible choices that will
result in facets in terms of oriented cycles : directed cycles in which each node is the head of
exactly one arc and the tail of exactly one arc.

Theorem 7. If F is a facet of ∇G, then for any cycle ~O in G with an assigned orientation,

|E(~GF ) ∩ E( ~O)| = |E(~GF ) ∩ E( ~O−1)|.

Note that GF being a maximal bipartite subgraph already implies that |E(GF )∩ E(O)| is

even for any cycle O in G. This theorem states that E(~GF ) consists of two subsets of arcs
of equal size having opposite orientations. Later in this section, we will show that, under an
additional dimensional condition, the converse is also true.

Proof. Recall that the incidence matrix Q(~GF ) is totally unimodular [1, Lemma 2.6], and the

reduced inner normal α̌, being the vector satisfying α̌>Q̌(~GF ) = −1>, must be an integer
vector. Then α = (0, α̌) is also an integer vector, and ±〈 ei − ej , α 〉 > −1 is an integer for
any ei − ej 6∈ F . This implies that 〈 ei − ej , α 〉 = 0 for any ei − ej 6∈ ±F .

Suppose G contains a cycle O of length m having edges i1 ↔ i2 ↔ · · · ↔ im+1 with
im+1 = i1, and let E = E(GF ) ∩ E(O). Then 0 =

∑m
r=1(eir − eir+1) implies

0 =

〈
m∑
r=1

(eir − eir+1) , α

〉
=

∑
{j,j+1}∈E

〈
eirj − eirj+1 , α

〉
+

∑
{j,j+1}∈E(O)\E

〈
eirj − eirj+1 , α

〉
=

∑
{j,j+1}∈E

〈
eirj − eirj+1 , α

〉
,
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since 〈 ei−ej , α 〉 = 0 for any ei−ej 6∈ ±F . Moreover, 〈 ei−ej , α 〉 = ±1 for any ei−ej ∈ F ,
i.e., each term in the above sum is ±1. We conclude that |E| = |E(GF ) ∩ E(O)| is even.

Let ~O with arcs i1 → i2 → · · · → im+1 be the corresponding oriented cycle. Then

〈 eirj − eirj +1 , α 〉 = −1 implies (irj , irj+1
) ∈ E(~G)∩E( ~O) and 〈 eirj − eirj +1 , α 〉 = 1 implies

(irj+1
, irj) ∈ E(~G) ∩ E( ~O−1). Therefore,

|E(~GF ) ∩ E( ~O)| = |E(~GF ) ∩ E( ~O−1)|. �

Theorem 7 shows necessary conditions for a subset F of ∇̄G to be a facet: the intersection
between ~GF and any cycle ofG itself must satisfy a balancing condition, i.e., |E(~GF )∩E( ~O)| =
|E(~GF )∩E( ~O−1)| for any oriented cycle ~O. By itself, however, this condition is not sufficient
to define a facet. In the following, we will show that under additional assumptions, this
balancing condition is also a sufficient condition.

Theorem 8. Let F be a codimension 1 subset of ∇G such that 0 6∈ conv(F ). Then F is a

facet of ∇G if, for any oriented cycle ~O in ~G,

|E(~GF ) ∩ E( ~O)| = |E(~GF ) ∩ E( ~O−1)|.

Proof. It is sufficient to consider the embedding ∇̌G ⊂ Rn and assume F ⊂ ∇̌G. Since F is
a codimension 1 subset of ∇̌G that does not contain 0 in its convex hull,

N − 2 = dim(F ) = rank(Q(~GF ))− 1 = |V(~GF )| − k − 1

where Q(~GF ) is the incidence matrix whose columns are points in F and k is the number of

weakly connected components in ~GF [1, Theorem 2.3]. Therefore ~GF is necessarily (weakly)
connected and spanning, and GF is connected and spanning.

If T is a spanning tree of GF , then T is also a spanning tree of G. Let ~T be the cor-
responding directed subgraph of ~GF . By [13, Corollary 3.2] ([9, Corollary 13]), points in

∆ = ∇̌~T ⊂ F̌ form a simplex, and Q̌(~T ) is nonsingular. Additionally, if α̌ is the unique

solution to α̌>Q̌(~T ) = −1>, then

〈 ei − ej , α̌ 〉 = −1 for all (i, j) ∈ ~T .

Since F is assumed to be a codimension 1 subset in ∇̌G, i.e., dim(F ) = dim(∆), F must be
contained in the affine span of ∆. Consequently,

〈 ei − ej , α̌ 〉 = −1 for all ei − ej ∈ F.

Recall that 0 is not contained in the convex hull of F , i.e., F cannot contain both ±(ei−ej)
for any {i, j}, so F and −F are disjoint. For any ei − ej ∈ −F and hence outside F , it is
clear that 〈 ei − ej , α̌ 〉 = +1.

For any ei − ej ∈ ∇̌G \ (F ∪ (−F )), the corresponding undirected edge {i, j} is outside
GF and hence outside T . Consider the fundamental cycle O formed by {i, j} and the path
i = i1 ↔ · · · ↔ im ↔ im+1 = j in T . We have

ei − ej =
m∑
j=1

(eij − eij+1
),

8



and there are λ1, . . . , λm ∈ {±1} such that λj(eij − eij+1
) ∈ ∆ ⊆ F . By the assumption that

|E(~GF ) ∩ E( ~O)| = |E(~GF ) ∩ E( ~O−1)|, m must be even, and λ1 + · · ·+ λm = 0. Therefore,

〈 ei − ej , α 〉 =
m∑
j=1

〈 eij − eij+1
, α 〉 =

m∑
j=1

λj〈λj(eij − eij+1
) , α 〉 =

m∑
j=1

λj(−1) = 0.

That is, the linear functional 〈 · , α 〉 takes the value of −1 on F , and it is nonnegative on
∇G \ F . Therefore F is a facet. �

4.4. Parameterizing facets with cut-set vectors. Facets of ∇G correspond to maximal
bipartite subgraphs of G through the map F 7→ GF . In general, multiple facets will be
mapped to the same facet subgraph. Theorems 7 and 8 gave necessary and sufficient condi-
tions to identify facets in the fiber over a given facet subgraph in terms of oriented cycles. In
this section, we refine these constraints into “independent” equations and thereby provide
a complete description of the equivalence class of facets corresponding to the same facet
subgraph. It will form the foundation for counting and generating facets of ∇G.

The description makes use of the fundamental cycle vectors and cut-set vectors. For a
facet subgraph GF and a spanning tree T of GF , let ~T be the corresponding subdigraph
of ~GF . Since a facet subgraph is necessarily connected and spanning, T is also a spanning
tree of G. Any edge e ∈ E(G) \ E(T ) induces a fundamental cycle O with respect to T .

With an arbitrary choice of the orientation, the oriented cycle ~O can be expressed as an
incidence vector c~T (e) = (c1, . . . , cn)> with respect to the ordered list of arcs in ~T so that

~e−1 corresponds to the point Q(~T )c~T (e) ∈ ∇̌G. In other words, c~T (e) ∈ {+1, 0,−1}|E(~T )|,

with each entry indicating whether the orientation of the corresponding edge of ~T agrees or
disagrees (or is not involved) with the orientation of ~O.
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7

(a) A graph G
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345

6

7

(b) A spanning tree T of G
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345

6

7

(c) ~T with canonical orientation

Figure 2. A running example

Consider, for example, in the graph G shown in Figure 2a, which will serve as a running
example. The subgraph T in Figure 2b is a spanning tree. In Figure 2c, we choose a canonical
orientation and produce ~T . If we arrange its arcs into the ordered list

(1) (2→ 3, 4→ 3, 4→ 5, 6→ 5, 6→ 7, 1→ 7),

then the oriented fundamental cycle 1 → 2 → · · · → 7 → 1, induced by e = {1, 2}, can be
expressed as the incidence vector (+1,−1,+1,−1,+1,−1)>.

Similarly, fixing an ordering of the arcs, a cut-set defined by a cut can be expressed as the
vector with entries in {−1, 0,+1} indicating the direction in which each arc goes across the
partition (0 for not crossing the partition). In the example shown in Figure 2c, with respect
to the cut V(G) = {3, 5, 7} ∪ {1, 2, 4, 6}, the cut set, which include arcs listed in (1), can be
encoded as (−1,−1,−1,−1,−1,−1). as they all go from {1, 2, 4, 6} to {3, 5, 7}.
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Theorem 9. For a maximal bipartite subgraph B ≤ G with partition V+∪V− = V(B), let T

be a spanning tree of B and ~T be the corresponding digraph with canonical orientations (see
Remark 6). There is a bijection between the facets {F ∈ F(∇̌G) | GF = B} and the set of
cut-set vectors d ∈ {±1}n of T with respect to the cut (V+, V−) satisfying the system

(2)

{
c~T (e)>d = ±1 for e ∈ E(B) \ E(T )

c~T (e)>d = 0 for e ∈ E(G) \ E(B)

Note that the ± sign is the consequence of the inherent ambiguity in the orientation
assignment for a given fundamental cycle.

Proof. Since the maximal bipartite subgraph B must span G, T also spans G, and (V+, V−)

is a partition of V(G). Recall that ~T (see Remark 6) has the arc set

E(~T ) = {(i, j) | {i, j} ∈ E(T ), i ∈ V−, j ∈ V+}.

Let d ∈ {±1}n be a cut-set vector satisfying the system of equations (2), and letD = diag(d).

Then there exists a vector α ∈ RN such that α>Q(~T ) = −d, i.e.

α>Q(~T )D = −1.

Define ∆′ to be the set of points that are the columns of Q(~T ) diag(d). Then G∆′ = T and
thus ∆′ is a codimension-1 simplex in ∇̄G. Moreover, the above equations show that

〈x , α 〉 = −1 for any x ∈ ∆′.

If T 6= B, then each edge e ∈ E(B) \ E(T ) determines a fundamental cycle with respect to

T represented by the vector c = cT (e) such that e corresponds to a point x = −Q(~T )c. By
assumption (2), c>d = ±1. Therefore,

α>x = α>(−Q(~T )c) = −α>Q(~T )DDc = 1>Dc = d>c = ±1.

Similarly, for any e ∈ E(G) \E(B), the fundamental cycle with respect to T is represented

by a vector c = cT (e) such that e corresponds to a point x = −Q(~T )c. By assumption (2),
c>d = 0. Following the same calculations above,

α>x = α>(−Q(~T )c) = −α>Q(~T )DDc = 1>Dc = d>c = 0.

We have shown 〈x , α 〉 is −1 for all x in the codimension-1 simplex ∆′ of ∇̄G and ±1 or 0
for any non-interior point in ∇̄G. Therefore, α defines a unique facet aff(∆′)∩∇̄G ∈ F(∇G).
That is, each solution d to the system (2), determines a unique facet of ∇̄G.

Conversely, any facet F ∈ F(∇̄G) such that GF = B ≥ T must contain the subset
{d1x1, . . . , dnxn} for some d = (d1, . . . , dn) ∈ {±1}n, where {x1, . . . ,xn} = ∇̄~T . The vector

d is uniquely determined by the choice of ~T . By Theorem 7, d must satisfy the equations
in (2). That is, each facet of ∇̄G corresponds to a unique solution d to the system (2). �

D’Al̀ı, Delucchi, and Micha lek showed that for a connected bipartite graph G, |F(∇G)| is
bounded by 2N−1 [9, Corollary 33]. It is then noted that this upper bound no longer holds
when the graph is not bipartite. From the above proof, we can derive a refinement of this
result: this upper bound always holds for the number of facets in an equivalence class of
facets associated with a given facet subgraph.

10



Corollary 10 (A refinement of Corollary 33 of Ref. [9]). For a facet F ∈ F(∇G),

| {F ′ ∈ F(∇G) | GF ′ = GF} | ≤ 2N−1.

With this, we can derive an upper bound for the total number of facets, which is a
generalization of [9, Corollary 33] to all connected graphs.

Corollary 11. If β is the number of maximal bipartite subgraphs of G, then

| F(∇G) | ≤ β · 2N−1.

When G is bipartite, the only facet subgraph (the unique maximal bipartite subgraph) is
G itself, and the result reduces to the previously established upper bound [9, Corollary 33].

4.5. Properties of faces and their face subgraphs. We now establish connections be-
tween the geometric properties of faces of ∇G and the graph-theoretical properties of their
corresponding face subgraphs. Recall that the cyclomatic number of a graph G is the mini-
mum number of edges that can be deleted from G such that the resulting graph is acyclic.

Theorem 12. For a proper face F of ∇G,

(i) F is independent if and only if GF is a forest;
(ii) F is a circuit if and only if GF is a chordless cycle;

(iii) dim(F ) = |V(GF )| − k − 1 where k is the number of connected components in GF ;
(iv) corank(F ) is the cyclomatic number of GF .

If GF is spanning, its Betti numbers are the codimension and corank of F . Some properties
have been studied in different context. E.g., part (iii) was established in [11, Lemma 1].

Proof.

(i) Let F ′ be a facet of ∇G containing F . If GF contains a cycle with edges i1 ↔ · · · ↔
im ↔ i1, then this cycle is also contained in GF ′ . By Theorem 7, it must be an even cycle,
and there exist λ1, . . . , λm ∈ {±1} with

∑m
j=1 λj = 0 such that λj(eij − eij+1

) ∈ F for all j.
This gives us the affine dependence relation

m∑
j=1

λj(λj(eij − eij+1
)) =

m∑
j=1

(eij − eij+1
) = 0

with the coefficients λ1, . . . , λm. Therefore F itself cannot be independent.
Conversely, if GF is a forest, then the incidence matrix Q(~GF ), whose columns are points

in F , has full column rank [1, Lemma 2.5] [21]. Therefore F is independent.

(ii) If F is a circuit, then F is dependent by definition. By part (i), GF contains a cycle
and the corresponding subset of points in F is dependent. However, the circuit F , being a
minimal affinely dependent set, must be exactly this set. Therefore GF is exactly this cycle.

Conversely, if F is not a circuit, then either F is independent or F contains a proper
dependent subset F ′. Again by part (i), GF is either a forest or it contains a strictly smaller
cycle, and thus GF is not a chordless cycle.

(iii) Let k be the number of connected components in GF . Then

dim(F ) = rank(Q(~GF ))− 1 = |V(GF )| − k − 1.
11



(iv) Let k be as defined above and µ be the cyclomatic number of GF . By part (iii),

µ = |E(GF )| − |V(GF )|+ k = |F | − (dim(F ) + 1) = corank(F ). �

Remark 13. Theorem 12 highlights the connection through which independent faces corre-
spond to forests, dependent faces correspond to cyclic graphs, and circuit faces correspond to
chordless cycles. The precise description emerges from the viewpoint of matroid theory [10].

Combining Theorems 3 and 12 part (i), we get a simple alternative proof to the fact
that ∇G is simplicial (i.e., all of its facets are simplices) if and only if all maximal bipartite
subgraphs of G are trees, which was first established by Higashitani in [12, Corollary 2.3]
and has important consequences in the study of facet systems of Kuramoto equations (see
Appendix A) and the structure of certain metric spaces [11].

Corollary 14 ([12, Corollary 2.3] ). ∇G is simplicial if and only if G has no even cycles. �

5. Case study: Joining two cycles along a shared edge

D’Al̀ı, Delucchi, and Micha lek showed that for a graph formed by joining two bipartite
graphs along an edge, the number of facets of the associated symmetric edge polytope is
1
2
f1f2 where f1 and f2 are the number facets in the symmetric edge polytopes associated

with the two bipartite subgraphs respectively [9, Proposition 37]. In the following we explore
the more general situation in which one of the subgraph is not bipartite.

The running example G, from Figure 2a, is a non-bipartite graph formed by joining a 4-
cycle and a 5-cycle along a single shared edge. As we will calculate, the facet count described
above ([9, Proposition 37]) no longer applies, yet Theorem 9 provides a concrete recipe for
calculating the number of facets and describing their combinatorial structures.

Figure 3 shows the seven maximal bipartite subgraphs of G. As established in Theorem 3,
they correspond to the five equivalence classes of facets in F(∇G). Among these subgraphs,
three of them are trees (Figure 3a), and, according to Theorem 12 part (i), they correspond
to corank-0 (simplicial) facets. The other four each contain a unique 4-cycle (Figure 3b),
and, according to Theorem 12 part (iv), they correspond to corank-1 facets.
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(a) Corank-0 facet subgraphs of G
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(b) Corank-1 facet subgraphs of G

Figure 3. Facet subgraphs (maximal bipartite subgraphs) of G

12



As shown in Figure 2, we pick a corank-0 facet subgraph, a spanning tree of this subgraph,
and an assignment of edge orientations. Up to a recording of the edges, the two fundamen-
tal cycles can be expressed as vectors [+1,−1,+1,−1,+1,−1] and [0, 0,+1,−1,+1,−1].
Therefore the defining equation (2) in Theorem 9 for the parametrization of the facets in
this equivalence class is [

+1 −1 +1 −1 +1 −1
0 0 +1 −1 +1 −1

]
d =

[
0
0

]
in the unknowns d = (d1, . . . , d6)> ∈ {±1}6. This equation is equivalent to[

+1 −1 0 0 0 0
0 0 +1 −1 +1 −1

]
d =

[
0
0

]
.

From this we can see that (d1, d2) and (d3, d4, d5) can be described independently, and there
are two possible choices for (d1, d2), namely (+1,+1) and (−1,−1). Similarly, there are six
possible choices for (d3, d4, d5, d6):

(+1,+1,+1,+1) (+1,+1,−1,−1) (+1,−1,−1,+1)

(−1,−1,+1,+1) (−1,−1,−1,−1) (−1,+1,+1,−1).

Altogether, there are 12 possible choice for the vector d ∈ {±1}6 for the equation (2). These
produce 12 distinct facets in the equivalence class of facets corresponding to a corank-0
maximal bipartite subgraph of G shown in Figure 3a.
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7

Figure 4. A corank-
1 facet subgraph and
its spanning tree.

Similarly, we pick a facet subgraph GF of corank 1 in Figure 3b,
a spanning tree T of this subgraph, and a canonical assignment of
edge orientations ~T shown in Figure 4, where the dotted edge is in
~GF but not in ~T . With respect to this choice, and up to a reordering
of the edges in ~T , the two fundamental cycles can be expressed as
vectors [−1,−1,+1, 0, 0, 0] and [0, 0,+1,−1,+1,−1]. Therefore the
fundamental cycle equations are[

−1 −1 +1 0 0 0
0 0 +1 −1 +1 −1

]
d =

[
±1
0

]
.

Through direct calculations we can see there are 18 solutions for d ∈ {±1}6 corresponding
to the 18 facets in the equivalence class.

The same argument can be applied to each of the four corank-1 facet subgraphs in Fig-
ure 3b. Therefore there are 72 corank-1 facets in F(∇G). All together there are 36+72 = 108
facets in F(∇G). Among them, 36 facets are simplicial and the remaining 72 facets are
(affinely) dependent and of corank 1.

The calculation shown in this concrete example can be easily generalized to graphs formed
by joining an even cycle and an odd cycle along a shared edge. The counting argument
involved makes use of the following elementary formulas from combinatorics.

Lemma 15. For a positive integer n, there are exactly
(

2n
n

)
distinct choices of vectors d ∈

{±1}2n that satisfy the equation

+1 · · · +1 −1 · · · −1

[ ]n n

d = 0.
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Lemma 16. For a positive integer n, there are exactly
(

2n
n−1

)
distinct choices of vectors

d ∈ {±1}2n that satisfy the equation

+1 · · · +1 −1 · · · −1

[ ]n n

d = 2.

Proof. The solutions d = (d1, . . . , d2n)> ∈ {±1}2n correspond to the different ways of choos-
ing only i entries among (d1, . . . , dn) and i + 1 entries among (dn+1, . . . , d2n) to be −1 for
i = 0, . . . , n− 1. By applying the Vandermonde identity, the total number of possibilities is

n−1∑
i=0

(
n

i

)(
n

i+ 1

)
=

(
2n

n− 1

)
. �

Proposition 17. Let G be the graph formed by joining two cycles of size 2m1 and 2m2 + 1
respectively along a shared edge. The total number of facets of ∇G is

(2m1 − 1)

(
2m1 − 2

m1 − 1

)(
2m2

m2

)
+ (2m2)

(
2m1 − 1

m1

)(
2m2

m2

)
,

and the two summands are the number of corank-0 (simplicial) facets and corank-1 facets of
∇G, respectively.

Proof. First note that G contains N = 2m1 + 2m2 − 1 nodes and 2m1 + 2m2 edges. Since
G has a unique even cycle, by Theorem 3 and Theorem 12, the coranks of facets of ∇G are
either 0 or 1. We shall count them separately.

(Corank-0) We first count the corank-0 facets. By Theorem 12 part (iv), the facet
subgraph of G associated with a corank-0 facet must be a spanning tree of G that is also
a maximal bipartite subgraph of G. There are exactly 2m1 − 1 such spanning trees of G,
obtained by deleting the edge shared by the 2m1-cycle and the (2m2 + 1)-cycle and by
deleting exactly one additional edge of the 2m1-cycle (exemplified in Figure 3a). Note that
these corank-0 facet subgraphs are all paths of the same length, hence isomorphic to one
another. Up to a re-indexing of the n = 2m1 + 2m2 − 2 edges, the counting arguments for
each of these spanning trees are identical. It is therefore sufficient to calculate the number
of facets associated with one such spanning tree (path) T of G.

There are exactly two edges in E(G)\E(T ): the edge shared by the two cycles and another

edge of the even cycle. Let ~T be the corresponding digraph resulting from the canonical choice
of edge orientations as described in Remark 6. The fundamental cycle C induced by the first
edge includes all edges of the odd cycle, and the other fundamental cycle C ′ includes all
edges of ~T . Therefore, equation (2) is of the form

(3) 0 0 · · · 0 0 +1 −1 · · · +1 −1

+1 −1 · · · +1 −1 +1 −1 · · · +1 −1

 
2m1 − 2 2m2

d =

[
0
0

]
,

and the number of facets whose facet subgraph is T is exactly the total number of solutions
d = (d1, . . . , dn)> ∈ {±1}n to the above equation. Note that (d1, . . . , d2m1−2) ∈ {±1}2m1−2

and (d2m1−1, . . . , dn) ∈ {±1}2m2 can be solved independently.
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By applying Lemma 15 to these two groups of coordinates, we can see the number of
solutions d ∈ {±1}n to (3), being the product of solutions for (d1, . . . , d2m1−2) ∈ {±1}2m1−2

and (d2m1−1, . . . , dn) ∈ {±1}2m2 is
(

2m1−2
m1−1

)(
2m2

m2

)
. By Theorem 9,

|{F ∈ F(∇G) | GF = T}| =
(

2m1 − 2

m1 − 1

)(
2m2

m2

)
.

Recall that there are 2m1−1 distinct spanning tree that are maximal bipartite subgraphs of
G, each having the same number of associated facets, therefore, the total number of corank-0
facets ∇G has is

(4) (2m1 − 1)

(
2m1 − 2

m1 − 1

)(
2m2

m2

)
.

(Corank-1) Now we count the corank-1 facets. Since G contains a unique even cycle,
by Theorem 3 and Theorem 12 part (iv), the facet subgraph GF of a facet F ∈ F(∇G) of
corank 1, being a maximal bipartite subgraph of G of cyclomatic number 1, must contain this
even cycle as well as all except one edge of the odd cycle. Therefore, there are exactly 2m2

distinct subgraphs of G corresponding to facets of corank 1, as exemplified in Figure 3b. As
in the previous case, since all of these corank-1 facet subgraphs have the same fundamental
cycles, up to a re-indexing of edges, the counting arguments for each of these subgraph are
identical, and it is therefore sufficient to calculate the number of facets associated with a
single corank-1 subgraph B < G.

Fix any spanning tree T < B, and let ~T be the corresponding digraph resulting from
the canonical choice of edge orientations. There is only one edge in E(B) \ E(T ), and the
corresponding fundamental cycle involves all edges of the even cycle (as shown in Figure 4).
Up to a re-indexing of the edges, the corresponding fundamental cycle vector can be expressed
as [+1,−1,+1, . . . ,−1,+1, 0, . . . , 0] with the last 2m2 − 1 coordinates being zero.

Similarly, there is a unique edge in E(G)\E(B), and the corresponding fundamental cycle
involves all edges of the (2m2 + 1)-cycle. Its fundamental cycle vector can be expressed as
[0, . . . , 0,+1,−1,+1, . . . ,−1,+1] with the first 2m1 − 2 coordinates being zero. Therefore,
equation (2) is of the form

(5) +1 · · · −1 +1 0 · · · 0 0

0 · · · 0 +1 −1 · · · +1 −1

 
2m1 − 2 2m2

d =

[
±1
0

]
,

and its solutions d = (d1, . . . , dn)> ∈ {±1}n are in one-to-one correspondence with the facets
whose facet subgraph is B.

We can solve for (d2m1−1, d2m1 , . . . , dn) ∈ {±1}2m2 , subjects to the constraint d2m1−1 −
d2m1 , . . . ,+dn = 0, independently. Following the counting argument from the previous case,
we can verify that there are exactly

(
2m2

m2

)
choices for (d2m1−1, d2m1 , . . . , dn) ∈ {±1}2m2 .

The choices of (d1, . . . , d2m1−2), however, depend on the value of d2m1−1, since they are
related by the equation d1 − d2 + · · · − d2m1−2 + d2m1−1 = p, where p ∈ {±1}. We consider
the two cases depending on the sign of d2m1−1/p.

If p = d2m1−1, the equation is equivalent to d1−d2 + · · ·−d2m1−2 = 0, and there are exactly(
2m1−2
m1−1

)
distinct choices for (d1, . . . , d2m1−2) ∈ {±1}2m1−2. If p = −d2m1−1, the equation is
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equivalent to d1−d2+· · ·−d2m1−2 = 2(−d2m1−1), and, by Lemma 16, there are exactly
(

2m1−2
m1−2

)
distinct choices for (d1, . . . , d2m1−2) ∈ {±1}2m1−2. In total, the number of possibilities for
(d1, . . . , d2m1−2) ∈ {±1}2m1−2 is(

2m1 − 2

m1 − 1

)
+

(
2m1 − 2

m1 − 2

)
=

(
2m1 − 1

m1 − 1

)
=

(
2m1 − 1

m1

)
.

Therefore, the total number of distinct choices of d ∈ {±1}n that satisfy (5) is(
2m1 − 1

m1

)(
2m2

m2

)
.

This number is also the number of facets of ∇G whose facet subgraph is B, i.e.,

|{F ∈ F(∇G) | GF = B}| =
(

2m1 − 1

m1

)(
2m2

m2

)
.

Recall that there are 2m2 corank-1 facet subgraphs. Therefore, the total number of corank-1
facets ∇G has is

2m2

(
2m1 − 1

m1

)(
2m2

m2

)
,

which completes the proof. �

Note that this proof is constructive in the sense that the facets, encoded as cut-set vectors,
can be enumerated as solutions to (4) and (5).

We conclude with an alternative formulation for the facet count provided by the propo-
sition above, similar to the result established in [9, Proposition 37]. Ohsugi and Shibata
showed that for an even cycle C2k, the number of facets of ∇C2k

is
(

2k
k

)
[19]. Using this

formula, we can relate the facet count presented above and the facet counts for symmetric
edge polytopes associated with even cycles.

Corollary 18. Let G be the graph formed by joining two cycles of size 2m1 and 2m2 + 1
respectively along a shared edge. Then

|F(∇G)| = m1 + 2m2

2
fC2m1

fC2m2
,

where fC2m1
and fC2m2

are the number of facets ∇C2m1
and ∇C2m1

have respectively.
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Appendix A. Applications to algebraic Kuramoto equations

Facets of ∇G play important roles in the study of algebraic Kuramoto equations [3, 4,
7], which has attracted interests from electrical engineering, biology, and chemistry. The
original Kuramoto equations model the synchronization behaviors of a network of coupled
oscillators [16], which can be represented by a weighted graph G with the nodes V(G) =
{0, . . . , n} representing the oscillators, the edges E(G) representing the connections among
the oscillators, and the weights K = {kij} representing the coupling strengths along the
edges. Each oscillator i has its own natural frequency ωi. The dynamics of the network can
be described by the differential equations

(6)
dθi
dt

= ωi −
∑

j∈NG(i)

kij sin(θi − θj), for i = 0, . . . , n,

where each θi ∈ [0, 2π) is the phase angle that describes the status of the i-th oscillator,
and NG(i) is the set of its neighbors. Frequency synchronization occurs when the competing
forces reach equilibrium and all oscillators are tuned to the same frequency, i.e., dθi

dt
= c for
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a common constant c for all i. They are precisely the solutions to the system of equations

(7) ωi −
∑

j∈NG(i)

kij sin(θi − θj) = c for i = 1, . . . , n

in the variables θ1, . . . , θn. Here θ0 = 0 is fixed as the reference phase angle. With the
substitution xi := eiθi (x0 = 1), (7) can be transformed into the algebraic system

(8) FG,i(x1, . . . , xn) = ωi − c−
∑

j∈NG(i)

kij
2i

(
xi
xj
− xj
xi

)
= 0 for i = 1, . . . , n.

The system FG = (FG,1, . . . , FG,n) consists of n Laurent polynomial equations in the n
nonzero complex variables x = (x1, . . . , xn) ∈ (C∗)n = (C \ {0})n.

Considering FG as a column vector, for any nonsingular n × n matrix R, the systems
FR
G = R · FG and FG have the same zero set. For generic choices of the matrix R, there is

no complete cancellation of the terms, and thus FR
G is of the form

(9) FR
G,k = cRk −

∑
{i,j}∈E(G)

(
aRijk

xi
xj

+ aRjik
xj
xi

)
for k = 1, . . . , n,

where cRk and aRijk are the resulting nonzero coefficients after collection of similar terms. This
is the algebraic Kuramoto system in its unmixed form. To see the connections to symmetric
edge polytopes more clearly, we shall use the vector exponent notation

(x1, . . . , xn)

 a1...
an


= xa11 · · ·xann .

We can then write (9) as

FR
G,k(x) =

∑
a∈∇̌G

c(a) xa for k = 1, . . . , n,

where the function c : ∇̌G → C captures the coefficients. That is, ∇̌G is exactly the support
of the unmixed form of the algebraic Kuramoto system. Facets and faces, in general, of ∇̌G

play particularly important roles in the study of this algebraic system. In the following,
we highlight three of them, namely the roles in toric deformation homotopy method (ap-
pendix A.1), root counting (appendix A.2), and construction of homogeneous coordinates
(appendix A.3).

A.1. Toric deformation homotopy. The toric deformation homotopy for unmixed alge-
braic Kuramoto equations is a specialized polyhedral homotopy [15] construction for locat-
ing all complex zeros of (9), which includes all frequency synchronization configurations.
Utilizing the topological information extracted from the underlying graph, this homotopy
construction has the potential to avoid the computationally expensive preprocessing steps
associated with polyhedral homotopy (e.g. mixed cell computations). In the most basic
form, it is defined by the function HG : Cn×C→ Cn with HG(x, t) = (HG,1, . . . , HG,n) given
by

(10) HG,k =
∑
a∈∇̌G

c(a) xatω(a) for k = 1, . . . , n, where ω(a) =

{
0 if a = 0

1 otherwise.
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Clearly, HG(x, 1) = FR
G (x). As t varies between 0 and 1 within the interval (0, 1), HG(x, t)

represents a smooth deformation of the system FR
G , and the corresponding complex roots

also vary smoothly, forming smooth paths reaching all complex zeros of FR
G [3, 15].

The starting points of the smooth paths, however, are not well defined, as the limit points
of these paths as t→ 0 are not contained in (C∗)n. Yet, with the change of variables

xk = ykt
αk for k = 1, . . . , n,

where α̌ = (α1, . . . , αn) is a normalized inner normal of a facet F ∈ F(∇̌G), the limit points
of certain paths, in the y-coordinates, are exactly the (C∗)-solutions to the subsystem

0 =
∑

a∈F∪{0}

c(a) xa for k = 1, . . . , n

defined by the facet F . As the pair (F, α̌) runs through the set of facets and their correspond-
ing normalized inner normals, the solutions of the subsystems of the above form include limit
points, in the y-coordinate, of all paths defined by HG,k = 0. Therefore, explicit descriptions
to the facets of ∇̌G as well as their inner normals are crucially important in bootstrapping
the toric deformation homotopy method for solving the Kuramoto equations.

A.2. Facet systems and the root counting problem. A closely related application is
the root counting problem for the algebraic Kuramoto equations (9). It is shown that for
generic choices of the coefficients, the total complex root count for algebraic Kuramoto
equations induced by cycles and trees is exactly the adjacency polytope bound. When there
are algebraic relations among the coefficients, the actual root count may be strictly less. An
algebraic certificate for such decrease in root count is provided by “face systems”. For a
positive-dimensional face F of ∇̌G, the corresponding face system of (9) is given by

(11) 0 =
∑
a∈F

c(a) xa for k = 1, . . . , n.

By Bernshtein’s Second Theorem [2], if (11) has nontrivial solutions (C∗-solutions), then
the root count for (9) is strictly less than the adjacency polytope bound. Consequently, the
descriptions of faces, especially facets, of ∇̌G given in Theorems 3 and 9 provide a foundation
for studying the root count of the algebraic Kuramoto equations (9).

A.3. Construction of homogeneous coordinates. One issue users of homotopy continu-
ation methods have to face is the existence of divergent paths, e.g., solution paths defined by
(10) that do not have limit points, as t→ 1, in the work space Cn. A common solution is to
compactify the work space. Homogeneous coordinates, a special case of Cox’s homogeneous
ring [8], provide the most general construction for achieving this goal. Even though the use of
homogeneous coordinates tends to introduce a large number of auxiliary variables and hence
is impractical in actual calculations, they remain important tools for theoretical analysis of
algebraic Kuramoto equations. The foundation of homogeneous coordinates construction is
the full description of facets F(∇G) and their inner normals.

Let m = |F(∇̌G)|, and let α1, . . . ,αm be the primitive inner normals for the facets of
∇̌G. Define the matrix V to be the m × n matrix whose rows are α>1 , . . . ,α

>
m and let

h = (h1, . . . , hm)> be the column vector with entries

hi = min
x∈∇̌G

〈x , αi 〉.
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The homogenization of FR
G,k (9) is the polynomial F̂R

G,k(y) in the complex variables y =
(y1, . . . , ym) given by

F̂R
G,k(y) =

∑
a∈∇̌G

c(a) yV a−h.

The system F̂R
G = (F̂R

G,1, . . . , F̂
R
G,n) represents a lifting of the system (9) to a compact topo-

logical space (a compact toric variety). Consequently, each solution path defined by the

homotopy (10) has a limit point corresponding to an equivalence class of zero of F̂R
G in this

compact space, even if it has no limit point in Cn.
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