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GRAPH EDGE CONTRACTION AND ADJACENCY

POLYTOPES

TIANRAN CHEN AND EVGENIIA KORCHEVSKAIA

Abstract. Adjacency polytopes, a.k.a. symmetric edge polytopes, associated
with undirected graphs have been proposed and studied in several seemingly
independent areas ranging from number theory to discrete geometry and the
study of Kuramoto models. Regular subdivisions of adjacency polytopes are of
particular importance in solving certain algebraic systems of equations. This
paper explores the connection between the regular subdivisions of an adjacency
polytope and the contraction of the underlying graph along an edge. The main
result is the construction of a special regular subdivision whose cells are in
one-to-one correspondence with facets of adjacency polytope associated with
an edge-contraction of the original graph.

1. Introduction
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(a) Graph G
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(b) G′ = G � {0, 4}

Figure 1. Edge con-
traction of a graph

For a connected graph G with vertices V(G) =
{0, 1, . . . , n} and edge set E(G), its adjacency polytope [2]
(a.k.a. symmetric edge polytope [12]) is the convex poly-
tope ∇G = conv{ei − ej | {i, j} ∈ E(G)}. In the context
of Kuramoto models [10], the geometric structure of adja-
cency polytopes turned out to be instrumental in under-
standing the root counting problem of algebraic Kuramoto
equations [3, 4, 10]. In the broader context, the adjacency
polytope of a graph is the symmetric edge polytope which
has been studied by number theorists, combinatorialists,
and discrete geometers motivated by several seemingly in-
dependent problems [6, 8, 9, 12, 13, 14, 15]. These different
viewpoints are consolidated in the recent work by D’Al̀ı,
Delucchi, and Micha lek [5], which, among other contribu-
tions, shed new light on the structure of adjacency poly-
topes associated with graphs consisting of two subgraphs
sharing a single edge. In particular, using Gröbner bases
methods, the authors provided explicit formulae for the
number of facets and the normalized volume of adjacency polytopes associated
with graphs formed by gluing together two connected bipartite graphs, trees, or
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2 GRAPH EDGE CONTRACTION AND ADJACENCY POLYTOPES

cycles. In this paper, we pursue this line of inquiry by considering the effect of a
contraction of a graph along an edge on the corresponding adjacency polytope.

Of particular importance in the study of algebraic Kuramoto equations derived
from a graph G are the facets and regular subdivisions of the corresponding ad-
jacency polytope ∇G. The set of facets of ∇G corresponds to directed acyclic
subgraphs of G that satisfy certain minimal flow property [1]. Geometric structure
of the facets played a key role in computing the volume of the adjacency polytope
for certain families of graphs [3, 4, 5] as well as determining the generic root count
for algebraic Kuramoto equations. Equally important, a nontrivial regular subdi-
vision of ∇G gave rise to a toric deformation of the underlying algebraic Kuramoto
equations into a simpler system of equations, solutions to which can be identified
with all the complex solutions to the original system. In this paper, we explore the
connection between the regular subdivision of ∇G and the facets of ∇G�e where
G � e is the contraction of G along an edge e ∈ E(G). See example in Figure 1.

The main contribution of this paper is the construction of a special regular
subdivision of ∇G whose cells are in one-to-one correspondence with facets of ∇G�e

associated with the graph G�e. We also show that if G consists of two subgraphs G1

and G2 sharing exactly one edge e, then the cells in the special regular subdivision
of ∇G are in one-to-one correspondence with the products of facets of the adjacency
polytopes ∇G′

1
and ∇G′

2
, where G′

1 = G1 � e and G′
2 = G2 � e. Since this study is

largely motivated by the tropical intersections problem derived from the algebraic
Kuramoto equations, the resulting subdivision of the polytope ∇G can be also
conveniently viewed as a subdivision of the underlying point configuration. That
is, every cell in the subdivision that we aim to produce is a convex hull of vertices
of ∇G which are all integer lattice points. Combined with the existing knowledge
of facets of adjacency polytopes (symmetric edge polytopes) associated with trees,
cycles, bipartite graphs, and wheel graphs [5], this result enables us to study more
complicated graphs formed by gluing these basic building blocks along the edges.

This paper is structured as follows. Section 2 reviews the necessary definitions
and notations. Section 3 defines the special regular subdivision induced by an edge
contraction and establishes the main results. We conclude with an interpretation
of the results in Section 4.

2. Preliminaries and notations

Given a graph G = (V,E) and an edge e = {a, b} ∈ E, the contraction G � e of
G along e is a new graph obtained by merging the two nodes a and b in G. That
is, G � e = (V ′, E′) with V ′ = V \ {a, b} ∪ {a′} and E′ = E \ {a, b} ∪ {{a′, v} | v 6=
a, b, {a, v} ∈ E or {b, v} ∈ E}.

A convex polytope is the convex null of a finite set of points. Its dimension is
the dimension of the smallest affine space that contains it. A (nonempty) face of
a convex polytope is a subset of the polytope on which a linear functional 〈 · , α 〉
is minimized. In this case, α is an inner normal vector of the face. Faces are
themselves polytopes, and proper faces of the maximal dimension are called facets.
In this paper, we only deal with (convex) lattice polytopes, i.e., the convex polytopes
whose vertices have integer coordinates. For an n-dimensional lattice polytope
P ⊂ R

n, its normalized volume, denoted by nvol(P ), is n! vol(P ), which is always
an integer.
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For a connected graph G with vertices V(G) = {0, 1, . . . , n} and (undirected)
edge set E(G), its adjacency polytope [2] (a.k.a. symmetric edge polytope [5, 12]) is
the convex polytope

(1) ∇G = conv{ei − ej | {i, j} ∈ E(G)} ⊂ R
n,

where ei ∈ R
n is the vector with 1 in the i-th entry and zero elsewhere, and e0 = 0.

In the trivial case of n = 0, ∇G is simply {0}, and we adopt the convention that
the only facet of ∇G is ∅. For n > 0, ∇G is a full-dimensional polytope in R

n. We
also extend this construction to subgraphs of G. For a subgraph G′ of G, we use
the identical definition ∇G′ = conv{ei − ej | {i, j} ∈ E(G′)}. In this case, however,
∇G′ ⊂ span{ei | i ∈ V(G′)} and may not be full-dimensional. The set of facets of
∇G is denoted by F(∇G). Any facet of ∇G is an intersection of this polytope with
a supporting hyperplane, which is uniquely determined by an inner normal vector
[16]. Moreover, by construction, 0 is an interior point of ∇G for n > 0, which
allows the inner normal vectors to be normalized to a certain form. We state this
observation as a lemma for later reference.

Lemma 1. For any graph G such that ∇G is full-dimensional in R
n, a nonzero

vector α defines a facet of ∇G if and only if there are x1, . . . , xn such that x1, . . . , xn

are linearly independent as vectors and

〈xi , α 〉 = −1 for any i = 1, . . . , n, and

〈x , α 〉 ≥ −1 for any x ∈ ∇G.

If ∇G is not full-dimensional in R
n, the above statement remains valid in the

coordinate subspace in which ∇G is full-dimensional.
A (polyhedral) subdivision of a convex polytope P is a collection D of convex

polytopes contained in P and of the same dimension as P such that their union is P
and the intersection of any two is their (possibly empty) common face. Elements of a
subdivisions are known as cells. A point configuration is a finite collection of labeled
points S ⊂ R

n [11]. A subdivision of S is simply a subdivision of conv(S) whose
cells are convex hulls of the subsets of S. For such a cell C, we use the notations
dim(C) := dim(conv(C)), vol(C) := vol(conv(C)) and nvol(C) := nvol(conv(C)).

Regular subdivision is a particularly important class of subdivisions. For a point
configuration S, using weights assigned by a function ω : S → R, we define Ŝ =
{(x, ω(x)) | x ∈ S}. An inner normal vector α̂ ∈ R

n+1 of a face of conv(Ŝ) is

said to be upward pointing if 〈 en+1 , α̂ 〉 > 0. A facet of conv(Ŝ) with an upward
pointing inner normal vector is called a lower facet. The projection of all lower
facets of conv Ŝ form a subdivision of S, the regular subdivision (a.k.a. coherent
subdivision) of S induced by weight function ω [7, 11]. In this case, a lower facet
is defined by a vector α ∈ R

n, a value h ∈ R and a set C ⊂ S with |C| ≥ n,
dim(conv(C)) = n such that

(2)
〈x , α 〉 + ω(x) = h for all x ∈ C,

〈x , α 〉 + ω(x) > h for all x ∈ S \ C.

The construction of a special regular subdivision of an adjacency polytope induced
by an edge contraction of the underlying graph is the main focus of this paper.
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3. Regular subdivision induced by edge contraction

As noted in the definition of adjacency polytopes, we identify edges of a graph
of n + 1 nodes with points in R

n via the map

(3) φ(i, j) = ei − ej .

Here, an undirected edge {i, j} ∈ E(G) is considered as a pair of directed edges (i, j)
and (j, i). With this, the adjacency polytope of G is simply conv(φ(E(G))). In this
section, we construct a regular subdivision of ∇G induced by an edge contraction.

Definition 1 (Edge contraction subdivision). For an edge {k1, k2} ∈ E(G) to be
contracted, we define the lifting function ωk1,k2

: φ(E(G)) → Z given by

(4) ωk1,k2
(ei − ej) =

{

0 if {i, j} = {0, k},

1 otherise,

and the resulting lifted polytope

(5) ∇̂G = conv{(ei − ej , ωk1,k2
(ei − ej)) | {i, j} ∈ E(G)} ⊂ R

n+1.

The projections of the facets on the lower hull of ∇̂G onto R
n × {0} form a subdi-

vision of ∇G, the regular subdivision induced by ωk1,k2
. This subdivision, denoted

by Dk1,k2
will be referred to as the edge contraction subdivision of ∇G induced by

the edge contraction of G along {k1, k2}.

Remark 1. In the following discussion, we will make frequent use of a simple ob-
servation that can simply our notation and calculation. Since the choice of reference
node is arbitrary, without loss of generality and after re-indexing the nodes, we can
assume {0, k} is the shared edge of G1 and G2 for some k 6= 0. This corresponds
to a projection of the symmetric polytope onto one of the coordinate planes.

Lemma 2. For a connected graph G and one of its edges, {k1, k2}, every cell in
the edge contraction subdivision Dk1,k2

must contain both ek1
− ek2

and ek2
− ek1

.

Proof. As noted in Remark 1, without loss of generality, we can assume {0, k} is
the shared edge for some k 6= 0. In the follow, we consider the regular subdivision
induced by ω = ω0,k and will show that ±ek ∈ C for all C ∈ D.

Fix a cell C ∈ D, let Ĉ be the corresponding lower facet of ∇̂G, let α̂ =
(α, 1) = (α1, . . . , αn, 1) be the upward pointing inner normal vector of Ĉ, and

let h = min{〈 α̂ , x̂ 〉 | x̂ ∈ ∇̂G}.
Suppose ±ek 6∈ C, then there is a set of n + 1 affinely independent points of

the form ei − ej with {i, j} 6= {0, k} in C. By assumption, α̂ is orthogonal to the
affine span of this set. However, since ω(ei − ej) = 1 for {i, j} 6= {0, k}, the affine

span of Ĉ must be {(x, 1) | x ∈ R
n}, and consequently its normal vector α̂ must

be (0, . . . , 0, 1). Then for any ei − ej ∈ C,

〈 (ei − ej, ω(ei − ej)) , α̂ 〉 = 1 > 0 = 〈 (±ek, ω(±ek)) , α̂ 〉,

contradicting with the assumption that 〈 α̂ , · 〉 minimizes on Ĉ over ∇̂G. We can
conclude then either ek or −ek must be in C.

Now suppose ek ∈ C but −ek 6∈ C. then 〈−ek , α 〉 > 〈 ek , α 〉 which implies
that h = 〈 ek , α 〉 < 0. Since C is an n-dimensional cell, there is a set ∆ of
n affinely independent points in C of the form ei − ej with {i, j} 6= {0, k}, i.e.,
{ei − ej − ek | ei − ej ∈ ∆} is a linearly independent set. Let A be the n × n
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(b) Graph G′ resulted
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(c) Two subgraphs G′

1 and

G′

2 of G′

Figure 2. Edge contraction on a graph

matrix whose rows are points in ∆ as row vectors, and let B = A− 1e⊤k , which is

nonsignular. Recall that C is the projection of a lower facet of ∇̂G defined by the
inner normal vector α̂ = (α, 1). Therefore,

〈 ei − ej , α 〉 + 1 = 〈 ek , α 〉 for each ei − ej ∈ ∆,

which is equivalent to

Bα = Aα− 1e⊤k α = −1.

We will show this contradicts with the assumption that h < 0.
Suppose A is singular, let x be a nonzero vector in its null space. Then e⊤k x 6= 0,

since Bx = Ax− 1e⊤k x cannot be zero. We can verify that α = x/e⊤k x, and thus

h = 〈 ek , α 〉 = e⊤k x/e
⊤
k x = 1,

which contradicts with the assumption that h < 0.
On the other hand, if A is nonsingular, then without loss of generality, it is

possible to re-index the nodes {0, 1, . . . , n} \ {0, k} so that for each i 6= 0, k, ±(ei −
ej) ∈ ∆ implies j > i. With this arrangement, A is upper triangular and its
diagonal entries are ±1. Therefore, A is unimodular. Consequently, A−1 exists and
is an integer matrix. Recall that Bα = Aα − 1e⊤k α = −1, and h = e⊤k α. This
equation can be written as

Aα = (h− 1)1, i.e. α = (h− 1)A−1 1,

which gives us the relation

h = e⊤k α = h(e⊤k A−11) − e⊤k A
−11 = y h− y

if we let y = e⊤k A
−11. The above equation implies that y 6= 1. Moreover, since

A−1 is an integer matrix, y ∈ Z. Therefore,

h =
y

y − 1
≥ 0

contradicting with the assumption that h = e⊤k α < 0. That is, the assumption
ek ∈ C but ek 6∈ C leads to a contradiction. We can therefore conclude that
ek ∈ C implies −ek ∈ C. By the same argument, it can be shown that −ek ∈ C
implies ek ∈ C. Hence, ±ek ∈ C and αk = 0. �

In the following, using the special edge contraction subdivision, we establish the
link between ∇G and ∇G�{k1,k2}.
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3.1. Two subgraphs sharing an edge. We first consider the case where the
target graph G consists of two sub-graphs sharing a single edge with the two
corresponding vertices forming a cut set. Figure 2a shows an example of such
a graph. That is, there are two graphs G1 = (V1, E1) and G2 = (V2, E2) such that
V(G) = V1 ∪ V2, E(G) = E1 ∪ E2, and there is one edge e = {k1, k2} ∈ E(G) such
that V1 ∩ V2 = {k1, k2} and E1 ∩ E2 = {e}. The contraction G′ = G � e, shown
in Figure 2b, thus has a cut vertex, which allows us to consider the two separate
graphs (Figure 2c).

Theorem 1. For a connected graph G consisting of two subgraphs G1 and G2

sharing a single edge e = {k1, k2}, let G
′
1 = G1 � e and G′

2 = G2 � e. Then the cells
in the edge contraction subdivision Dk1,k2

of ∇G induced by the contraction of G
along {k1, k2} are in one-to-one correspondence with pairs in F(∇G′

1
) ×F(∇G′

2
).

Proof. As before, using the observation provided in Remark 1, we can assume {0, k}
is the shared edge for some k 6= 0. In addition, we assume the index k is chosen so
that i < k for all i ∈ V(G1) and k < j for all j ∈ V(G2). That is, after renaming
the nodes, we assume nodes 1, 2, . . . , k − 1 are in G1, nodes k + 1, . . . , n are in G2,
and nodes 0, k are in both. We only need to consider the subdivision D0,k.

By definition, the adjacency polytopes ∇G′

1
and ∇G′

2
are full-dimensional poly-

topes in the subspaces R
k−1 × {0n−k+1} and {0k} × R

n−k respectively. So their
facets are of dimensions k − 2 and n− k − 1 respectively.

By Lemma 2, any cell C must contain both ±ek, and therefore its upward
pointing inner normal vector γ̂ = (γ, 1) ∈ R

n+1 that defines the lower facet Ĉ of

∇̂G satisfies 〈±ek , γ 〉 = 0. Thus Ĉ is contained in the hyperplane 〈 · , γ̂ 〉 = 0, and

γ = (α, 0,β) for some α ∈ R
k−1 and β ∈ R

n−k.

Let C1 and C2 be the sets of projections of points in C in R
k−1 × {0n−k+1} and

{0k} × R
n−k respectively. We will show the nonzero points in C1 and C2 define

facets of ∇G′

1
and ∇G′

2
respectively. Since γ = (α, 0,β), the equation (2) which

defines the lower facet Ĉ implies

〈a , (α,0n−k+1) 〉 = −1 for all 0 6= a ∈ C1,(6)

〈b , (0k,β) 〉 = −1 for all 0 6= b ∈ C2,(7)

〈 ei − ej , (α,0n−k+1) 〉 ≥ −1 for all {i, j} ∈ E(G′
1),

〈 ei − ej , (0k,β) 〉 ≥ −1 for all {i, j} ∈ E(G′
2),

and there are at least n− 1 equalities in total in this system (since the two equal-
ities associated with ±ek are removed). Moreover, since dim(conv(C)) = n, the
corresponding points can be chosen to be linearly independent as vectors. There-
fore, there are at least k − 1 and n − k equalities among (6) and (7) respectively.
By Lemma 1, the vectors (α,0n−k+1) and (0k,β) must define facets in ∇G′

1
and

∇G′

2
respectively. That is, if we identify each cell with its corresponding upward-

pointing inner normal vector, then the map

γ 7→ (α,β) ∈ R
k−1 × R

n−k

sends each cell in D0,k to a pair of facets of ∇G′

1
and ∇G′

2
respectively.

We now simply have to show that this map has an inverse. Suppose F ′
1 and F ′

2

are two facets of ∇G′

1
and ∇G′

2
respectively. We will construct a corresponding cell

in D0,k. Let a1, . . . , am′

1
∈ φ(E(G′

1)) and b1, . . . ,bm′

2
∈ φ(E(G′

2)) be the points
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defining F ′
1 and F ′

2 respectively for some m′
1 ≥ k − 1 and m′

2 ≥ n − k. Then
by Lemma 1, there are vectors α ∈ R

k−1 and β ∈ R
n−k such that

〈ai , (α,0n−k+1) 〉 = −1 for all i = 1, . . . ,m′
1,

〈 ei − ej , (α,0n−k+1) 〉 ≥ −1 for all {i, j} ∈ E(G′
1),

〈bi , (0k,β) 〉 = −1 for all i = 1, . . . ,m′
2,

〈 ei − ej , (0k,β) 〉 ≥ −1 for all {i, j} ∈ E(G′
2).

Define

γ = (α, 0,β) ∈ R
k−1+1+n−k = R

n.

We will verify that γ̂ = (γ, 1) ∈ R
n+1 defines a lower facet of ∇̂G. Let

C1 = {(ai, p,0) | p ∈ {−1, 0, 1} , i = 1, . . . ,m′
1} ∩ φ0(E(G)),

C2 = {(0, p,bi) | p ∈ {−1, 0, 1} , i = 1, . . . ,m′
2} ∩ φ0(E(G)).

Then

〈 (ai, p,0) , (α, 0,β) 〉 + 1 = 〈ai , α 〉 + 1 = −1 + 1 = 0 for each (ai, p,0) ∈ C1,

〈 (0, p,bi) , (α, 0,β) 〉 + 1 = 〈bi , β 〉 + 1 = −1 + 1 = 0 for each (0, p,bi) ∈ C2.

Moreover, 〈 (±ek, 0) , γ̂ 〉 = 0. Let

C = C1 ∪C2 ∪ {±ek},

then Ĉ is contained in the hyperplane defined by 〈 · , γ̂ 〉 = 0. For points in φ(E(G))\
{±ek}, direct computation confirms that

〈±(ei − ej) , γ 〉 + 1 = 〈±(ei − ej) , (α,0n−k+1) 〉 + 1 ≥ 0 for any i, j < k,

〈±(ei − ej) , γ 〉 + 1 = 〈±(ei − ej) , (0k,β) 〉 + 1 ≥ 0 for any i, j > k,

〈±(ei − ek) , γ 〉 + 1 = 〈±ei , (α,0n−k+1) 〉 + 1 ≥ 0 for any 0 < i < k,

〈±(ej − ek) , γ 〉 + 1 = 〈±ej , (0k,β) 〉 + 1 ≥ 0 for any j > k,

〈±(ej − e0) , γ 〉 + 1 = 〈±ej , (0k,β) 〉 + 1 ≥ 0 for any j > k.

Therefore, conv(C) is a projection of a lower face. By construction,

|C| = |C1| + |C2| + |{±ek}| ≥ (k − 1) + (n− k) + 2 = n + 1,

and these points have affinely indepedent projections in R
k−1 ×{0}, {0k−1}×R×

{0n−k}, or {0k} × R
n−k. So,

dim(conv(C)) ≥ k − 1 + 1 + n− k = n.

Therefore, C must be a projection of a lower facet of ∇̂G and hence a cell in
D0,k. �

The theorem above establishes a bijection between cells in Dk1,k2
and pairs of

faces in F(∇G′

1
) and F(∇G′

2
). For later reference, this bijection will be denoted by

qk1,k2
: Dk1,k2

→ F(∇G′

1
) ×F(∇G′

2
) and given by

qk1,k2
(C) = (F1, F2),

where F1 and F2 are simply the convex hull of the projections of C in the coordinate-
subspaces in which ∇G′

1
and ∇G′

2
are full-dimensional.
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Remark 2. Note that qk1,k2
is only a bijection between the set of cells in Dk1,k2

and
the set F(∇G′

1
) × F(∇G′

2
). The points in C themselves may not be in one-to-one

correspondence with vertices in F1 and F2. In general, the projection that maps
points in C to vertices of F1 and F2 may be not be one-to-one. This is a reflection
of the fact that the edge-contraction operation may map multiple edges to the same
edge, since we only allow simple graphs (graphs with no multiple edges and loops).

In certain applications (e.g., the root counting problem for algebraic Kuramoto
equations), the normalized volume of ∇G is of great importance. With the subdi-
vision Dk1,k2

of ∇G, the normalized volume of ∇G can be computed as the sum
of the normalized volume of each cell. The normalized volume of a minimum cell
(a simplicial cell) can be computed directly. Indeed, the normalized volume in this
case will always be 2.

Theorem 2. Suppose G is a graph consisting of two subgraphs G1 and G2 sharing
a single edge e = {k1, k2}, with G′

1 = G1 � e and G′
2 = G2 � e. Let C be a cell in

the edge contraction subdivision Dk1,k2
with qk1,k2

(C) = (F1, F2) for some facets F1

and F2 of ∇G′

1
and ∇G′

2
respectively. If C is simplicial, then F1 and F2 are both

simplicial, and

nvol(C) = 2.

Proof. Without loss of generality, we still adopt the convention that {0, k} is the
shared edge, and i ≤ k for all i ∈ V(G1) and k ≤ j for all j ∈ V(G2) \ {0}. With
this convention, ∇G′

1
and ∇G′

2
are embedded in R

k−1×{0n−k+1} and {0k}×R
n−k

respectively.
Let C ∈ D0,k be a simplicial cell, and let (F1, F2) = q0,k(C), then F1 and F2,

being facets of ∇G′

1
and ∇G′

2
, are of dimensions k − 2 and n − k − 1 respectively.

Suppose either F1 or F2 is not simplicial, then the combined total number of vertices
is at least

(k − 2 + 1) + (n− k − 1 + 1) + 1 = n.

Since these points are nonzero projections of points in C, so C contains convex
independent set of n points x1, . . . ,xn ∈ φ(E(G)) with nonzero projections in
R

k−1 × {0n−k+1} or {0k} × R
n−k}. In addition, C contains two points ±ek,

which are in the fiber over 0 with respect to either projection, and thus ±ek 6∈
conv{x1, . . . ,xn}. Therefore, C contain at least n+ 2 points, and none of them is a
interior point. This contradicts with the assumption that C is simplicial. Therefore,
we can conclude that if C is simplicial, then F1 and F2 must also be simplicial.

Under this assumption, there are a1, . . . , ak−1 ∈ φ(E(G′
1)) ⊂ R

k−1 × {0n−k+1}
and b1, . . . ,bn−k ∈ φ(E(G′

2)) ⊂ {0k} × R
n−k so that

F1 = conv{a1, . . . , ak−1} and F2 = conv{b1, . . . ,bn−k}.

Moreover, with this embedding, the projection of vertices in C in R
k−1×{0n−k+1}

are exactly the points a1, . . . , ak−1. Similarly, the projection of vertices in C in
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{0k} × R
n−k are b1, . . . ,bk−1. Therefore,

nvol(C) = det

























a⊤1
...

a⊤k−1

2e⊤k
b⊤
1

...
b⊤
n−k

























= 2 det







a⊤1
...

a⊤k−1






det







b⊤
1

...
b⊤
n−k






,

which is precisely 2 · nvolk−1(F ′
1) · nvoln−k(F ′

2).
As shown in [4], a simplicial facet of an adjacency polytope has normalized

volume 1. So the above equality simplifies to nvol(C) = 2. �

3.2. Edge contraction in a single graph. We now apply the results from Section
3.1 to the edge contraction in a single graph G. Namely, we consider G as a union
of two graphs, G1 = G and G2 which has exactly one edge e = {k1, k2}. Then
Theorems 1 and 2 imply the following corollaries.

Corollary 1. Let e = {k1, k2} be an edge of a connected graph G. Let G′ = G� e.
Then the cells in the edge contraction subdivision Dk1,k2

of ∇G induced by the
contraction of G along the edge e are in one-to-one correspondence with the facets
of ∇G′ .

Corollary 2. Let e = {k1, k2} be an edge of a connected graph G. Let G′ = G� e.
Suppose C is a cell in the edge contraction subdivision Dk1,k2

with qk1,k2
(C) =

(F,∅) for some facet F of ∇G′ . If C is simplicial, then F is simplicial, and

nvol(C) = 2.

4. Conclusion

Adjacency polytopes, a.k.a. symmetric edge polytopes, are convex polytopes
associated with connected simple graphs that have found important applications
in several seemingly independent fields. The set of facets and regular subdivisions
of an adjacency polytope are particularly important in certain applications (e.g.
the study of algebraic Kuramoto equations). Recent works established explicit
descriptions of the facets and subdivisions of many families of graphs including
trees, cycles, wheels, and bipartite graphs [3, 4, 5]. The general description for
facets and subdivision for arbitrary connected graphs remains an important open
problem.

In this paper, we took one step toward a recursive approach for understanding
the geometric structure of adjacency polytopes associated with large and complex
graphs by considering the effect of an edge-contraction of a graph on the subdivi-
sions of the corresponding adjacency polytope. In particular, we showed that an
edge-contraction on a graph G naturally induces a special regular subdivision of ∇G

whose cells are in one-to-one correspondence with facets or product of facets of the
adjacency polytope(s) associated with the smaller resulting graph(s). Combined
with the existing understanding of the facet structures for adjacency polytopes as-
sociated with trees, cycles, wheels, bipartite graphs, etc., this correspondence can
shed light on the regular subdivisions of more complicated graphs formed by gluing
these graphs along edges.
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