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COMPUTING VOLUMES OF ADJACENCY POLYTOPES VIA

DRACONIAN SEQUENCES

ROBERT DAVIS AND TIANRAN CHEN

Abstract. Adjacency polytopes of graphs appear naturally in the study of nonlinear emer-
gent phenomenon in complex networks. The “type-PV” adjacency polytope, also known as
a symmetric edge polytope, arises in the study of Kuramoto equations. The “type-PQ” ad-

jacency polytope of the graph G, which we denote by ∇PQ
G

which is the focus of this work,
encodes rich combinatorial information about power-flow solutions in sparse power networks
that are studied in electric engineering. Of particular importance is the normalized volume
of such an adjacency polytope, which provides an upper bound on the number of distinct
power-flow solutions.

In this article we show that the problem of normalized volumes for the type-PQ adjacency
polytopes can be rephrased as counting D(G)-draconian sequences where D(G) is a certain
bipartite graph associated to the network. We provide recurrences for all networks with
connectivity as most 1 and, for 2-connected graphs, we give, under an additional mild
restriction, recurrences for subdividing an edge and taking the join of an edge with a new
vertex. Together, these recurrences imply a simple, non-recursive formula for the normalized

volume of ∇PQ
G

when G is part of a large class of outerplanar graphs; we conjecture that
the formula holds for all outerplanar graphs. Explicit formulas for several other (non-
outerplanar) classes are given. Further, we identify several important classes of graphs G

which are planar but not outerplanar worth additional study.
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1. Introduction and Background

Let G = (V (G), E(G)) be a simple graph on [N ] = {1, . . . , N}. We use e1, . . . , eN to
denote the standard basis vectors of RN . The PQ-type adjacency polytope of G is defined to
be

∇PQ
G = conv{(ei, ej) ∈ R2N | ij ∈ E(G) or i = j}

The authors were supported in part by NSF grant DMS-1922998.
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where conv(S) denotes the convex hull of elements of S. Its normalized volume, NVol(∇PQ
G ) =

dim(∇PQ
G )! vol(∇PQ

G ) where vol(P ) is the relative volume of P , is always a positive integer.
The study of PQ-type adjacency polytopes were introduced in [2], motivated by the en-

gineering problem known as power-flow study (or load-flow study). This study models the
balance of electric power on a network of power generation or delivery “buses”. Of par-
ticular importance are the alternating current (AC) variations, which produce nonlinear
equations that are notoriously difficult to analyze. In the AC model for a power network
with buses labeled as 1, . . . , N , the voltage on each bus is expressed as a complex variable
vi = xi + iyi whose absolute value represents the voltage magnitude and whose argument
encodes the phase of the AC experienced on the bus. The interaction among buses is mod-
eled by a graph G whose nodes represent the buses and whose edges represent the junctions.
Kirchhoff’s circuit laws give rise to an idealized balancing condition for the power injected,
power generated, and power consumed on each bus, which can be expressed as the system
of nonlinear equations

(1) Si =

N
∑

j=1

Y ijvivj for i = 2, . . . , N,

where Si = Pi+ iQi is a complex representation of the real and reactive power, Yij, known as
nodal admittance, describes the connection between the i and j buses, and Y ij and vj denote
the complex conjugate of Yij and vj respectively. By dropping the conjugate constraints
between vi and vi, we obtained the algebraic version of this system, known as the alge-
braic power-flow equations. It was shown that the maximum number of nontrivial complex
solutions this system has is bounded by the normalized volume of ∇PQ

G .
We take care to call the adjacency polytopes within this paper PQ-type, since a related con-

struction is sometimes called an adjacency polytope; see, for example, [4, 5]. This alternate
construction, motivated by counting equilibrium solutions to a network of interconnected os-
cillators, relies on a particular change of variables that is not available here. In engineering
terms, this alternate construction arises from PV-type buses.

In this article we show that the normalized volume of ∇PQ
G can be described in terms

of sequences of nonnegative integers related to the Dragon Marriage Problem: a variant
of Hall’s Matching Theorem that has far-reaching applications and spawned the study of
generalized permutohedra [9, 10]. We establish this relationship in Section 2 and show how
it can be immediately exploited to compute normalized volumes of some PQ-type adjacency
polytopes when G is nontrivial.

We explore this connection more deeply in Section 3 where we establish several recurrences.
Namely, we provide recurrences for all graphs with connectivity at most 1, that is, any graph
that is disconnected or has a cut-vertex. These directly imply a simple formula for NVol(∇PQ

G )
whenever G is a forest.

Sections 3.1 and 3.2 consider two operations on a 2-connected graph: subdivision of an
edge e and replacing e with the join of e and a new vertex. Under mild conditions, these
operations lead to the following two recurrences that are stated simply but nontrivial to
prove.

Theorem 3.10 (Subdivision recurrence). Let G be a connected graph on [N ] with an edge
e = uv. Denote by G : e the graph obtained by subdividing e. If degG(u) = 2 then

NVol(∇PQ
G:e) = 2NVol(∇PQ

G ) + NVol(∇PQ
G\e).
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Theorem 3.18 (Triangle Recurrence). Let G be a connected graph on [N ] with an edge
e = uv. Denote by G△e the graph on [N +1] with edge set E(G)∪{{u,N +1}, {v,N +1}}.
If degG(u) = 2, then

NVol(∇PQ
G△e) = 3NVol(∇PQ

G ).

Section 3 concludes by applying the recurrences to establish a closed, non-recursive formula
for NVol(∇PQ

G ) for a large class of outerplanar graphs; we conjecture that this formula holds
for all outerplanar graphs. The final section addresses several classes of graphs which are
planar but not outerplanar. First, we give results for a complete bipartite graph where one
partite set has just two elements. Then we consider the classes of wheel graphs and series-

parallel graphs, which are natural points of further study and will likely require a refinement
of the techniques within this article or alternate techniques altogether.

2. Notation, background, and translating to draconian sequences

Before we prove our results, we will establish assorted notation that will be needed through-
out this work. Additional notation will be introduced as needed. First, if e is an edge of G
with endpoints u and v, we will write e = uv or e = vu whenever possible. When additional
clarity is helpful we may alternately write e = {u, v} or e = {v, u}.

If X ⊆ V (G) then we use G−X to denote the graph obtained from deleting the vertices
of X as well as any edge that is incident to some vertex in X . If X = {v} then we will just
write G− v. Similarly, if S is a set of edges then we use G \ S to denote the graph with the
edges in S deleted; if S = {e} then we just write G − e. If X ⊆ V (G), then we use G[X ]
to denote the subgraph of G induced by X . Lastly, if H is a graph then we use G ∨ H to
denote the join of G and H , that is, the graph with vertex set V (G) ∪ V (H) and edge set

E(G) ∪ E(H) ∪ {uv | u ∈ V (G), v ∈ V (H)}.

For a positive integers M,N , let KN denote the complete graph on [N ] and let KM,N denote

the complete bipartite graph with partite sets [M ] and [N ] = {1, . . . , N}. Let NG(v) denote
the set of vertices of G adjacent to v. Keeping this notation in mind, we may now begin in
earnest.

In [10], Postnikov investigated the Dragon Marriage Problem, providing a generalization
of Hall’s Matching Theorem for bipartite graphs. In the Dragon Marriage Problem, a small
medieval village is home to n grooms and n + 1 brides, some pairs of whom would form
compatible marriages. Suppose we know all pairs of compatible grooms and brides. One
day, a dragon arrives in the village and kidnaps a bride. What compatibility conditions
among the original set of grooms and brides will guarantee that those who remain can still
be entirely paired by compatible marriages? In graph-theoretic terms, and more generally,
consider an X, Y -bigraph G such that |Y | = |X| + 1. What are necessary and sufficient
conditions on G so that G − y has a perfect matching regardless of choice of y ∈ Y ? The
answer relies on the following.

Definition 2.1. Let G ⊆ KN,N . Call (a1, . . . , aN) ∈ ZN
≥0 a G-draconian sequence if

∑

ai =
N − 1 and, for any 1 ≤ i1 < i2 < · · · < ik ≤ N ,

(2) ai1 + · · ·+ aik <

∣

∣

∣

∣

∣

k
⋃

j=1

NG(ij)

∣

∣

∣

∣

∣

.
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Figure 1. A graph G, left, and its corresponding bipartite graph D(G), right.

We will say that a sequence satisfying (2) satisfies the G-draconian inequality corresponding

to i1, . . . , ik.

Postnikov proved [10, Proposition 5.4 and Definition 9.2] that a matching that covers X
exists exactly when a G-draconian sequence exists. He then goes on to compute volumes of
certain polyhedra as sums over the set of G-draconian sequences. At the moment, it may
be completely unclear how draconian sequences are useful to us; the rest of this section is
dedicated to clarifying the connection.

Definition 2.2. Given a graph G ⊆ KM,N , let QG denote the root polytope

QG = conv{ei − ej | (i, j) ∈ E(G)} ⊆ RM × RN ,

where RN denotes the real vector space with standard basis vectors e1, . . . , eN .

It turns out that we can describe ∇PQ
G as a root polytope for an appropriate choice of

graph.

Definition 2.3. Let G be a simple graph on [N ]. Define D(G) to be the subgraph of KN,N

with edges {i, i} for each i ∈ [N ] and {i, j} and {j, i} for each edge ij in G.

As an example, let G be the graph on [4] with edges 12, 23, 34, 24. Then D(G) is the
bipartite graph with vertices {1, 2, 3, 4, 1, 2, 3, 4} and edges 11, 12, 21, 22, 23, 24, 32, 33, 34,
42, 43, and 44. See Figure 1 for an illustration.

Identifying ei in RN with −eN+i in R2N is a unimodular equivalence; thus, we have the
following simple but important result.

Lemma 2.4. For all G, ∇PQ
G is unimodularly equivalent to QD(G). �

We now list two more theorems from [10]. In the first,
∑

denotes the Minkowski sum
of polytopes and, given S ⊆ [N ], ∆S = conv{ei | i ∈ S}. It is also written to reflect our
particular context and does not quite capture the full strength of the original statement.
These two theorems are the last pieces needed to prove the main result of this section:
Theorem 2.8.

Theorem 2.5 ([10, Theorem 12.2]). Let G be a graph on [N ] for which D(G) is connected
and let

P−
D(G) =

{

x ∈ RN | x+∆[N ] ⊆
N
∑

i=1

∆ND(G)(i)

}

.

Then
NVol(QD(G)) = |P−

D(G) ∩ ZN |.
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As written, Theorem 2.5 relies on D(G) being connected. Fortunately, the connectedness
of G is equivalent to the connectedness of D(G). We will use this fact occasionally so we
present it as a lemma, although its proof is straightforward enough that we omit it.

Lemma 2.6. For any simple graph G, G is connected if and only if D(G) is connected. �

Since we are primarily working with D(G) rather than G directly, we let D(G) denote the
set of D(G)-draconian sequences.

Theorem 2.7 ([10, Theorem 11.3]). Let G be any graph. Then |P−
D(G) ∩ ZN | = |D(G)|.

Theorem 2.8. For any connected graph G on [N ], NVol(∇PQ
G ) = |D(G)|.

Proof. Lemma 2.6 assures us that D(G) is connected. By Lemma 2.4, NVol(∇PQ
G ) =

NVol(QD(G)). Applying Theorem 2.5 and Theorem 2.7 completes the proof. �

To illustrate, let G be the graph on [4] with edges 12, 23, and 24. Here, we have ND(G)(1) =
{1, 2}, ND(G)(2) = {1, 2, 3, 4}, ND(G)(3) = {2, 3} and ND(G)(4) = {2, 4}. Theorem 2.8 tells

us that NVol(∇PQ
G ) = 8 since

D(G) ={(0, 3, 0, 0), (0, 2, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1),

(1, 0, 1, 1), (0, 1, 1, 1), (0, 2, 1, 0), (1, 2, 0, 0)}.

It will be very helpful for us to explicitly state when a sequence is D(G)-draconian. The
main difference is recognizing that for every vertex i of G, degD(G)(i) = 1 + degG(i).

Definition 2.1 (Draconian sequences, rephrased). LetG be a graph on [N ]. Call (a1, . . . , aN) ∈
ZN
≥0 a D(G)-draconian sequence if

∑

ai = N − 1 and, for any 1 ≤ i1 < · · · < ik ≤ N ,

ai1 + · · ·+ aik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{i1, . . . , ik} ∪

(

k
⋃

j=1

NG(ij)

)∣

∣

∣

∣

∣

This translates our computation of normalized volume to a purely combinatorial compu-
tation. The following simple observation will also be helpful at several points when proving
the results in Section 3.

Remark 2.9. The normalized volume of ∇PQ
G is invariant under permutation of vertices.

We now give a first nontrivial application of Theorem 2.8 to an infinite class of graphs.

Proposition 2.10. Let N > 2 and let M be any matching of size k in KN . Then

NVol(∇PQ
KN\M) =

(

2(N − 1)

N − 1

)

− 2k.

Proof. Note that since N > 2, KN \ M is connected. First consider k = 0. The D(KN)-
draconian sequences are the weak compositions of N − 1 into N parts, of which there are
(

2(N−1)
N−1

)

. When k > 0, the deletion of each edge uv in M prohibits two compositions: those
whose entries are all 0 except for one, which is N − 1 and located at position u or v. �

Proposition 2.10 refers to a very specific class of graphs. The next section proves results
that allow for much more flexibility.
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3. Draconian Recurrences

One of the main purposes of this article is to establish several recurrences for NVol(∇PQ
G ),

using what we collectively call draconian recurrences. Certain specific recurrences will be
given their own names as we encounter them. For a simple first situation we consider the
disjoint union of two graphs G and H , which we denote G + H . Since Theorem 2.8 only
applies to connected graphs, we study their adjacency polytopes directly.

If P ⊆ Rn and Q ⊆ Rm are polytopes, each containing the origins 0n, 0m respectively,
then their free sum is

P ⊕Q = conv{(P × 0m) ∪ (0n ×Q)} ⊆ Rn+m.

When P and Q are lattice polytopes, there is a convenient product formula we may invoke.

Theorem 3.1 ([3, Theorem 2]). Given full-dimensional convex polytopes P ⊆ Rn and
Q ⊆ Rm, if both P and Q contain the origin of their respective ambient spaces, then

NVol(P ⊕Q) = NVol(P ) NVol(Q).

While Theorem 3.1 insists that P and Q are full-dimensional, we may replace them with
unimodularly equivalent polytopes P ′ ⊆ Rn′ ∼= aff(P ) and Q′ ⊆ Rm′ ∼= aff(P ). Since
unimodular equivalence preserves normalized volume, the conclusion of Theorem 3.1 remains
true. This gives us the last piece we need to prove the following.

Proposition 3.2. If G and H are any two graphs, then

NVol(∇PQ
G+H) = NVol(∇PQ

G ) NVol(∇PQ
H ).

Proof. Let |V (G)| = M and |V (H)| = N . If (x1, . . . , x2M ) ∈ ∇PQ
G then, by construction,

M
∑

i=1

xi = 1 and
2M
∑

i=M+1

xi = 1,

and similar is true for (y1, . . . , y2N) ∈ ∇PQ
H . It follows that the polytopes

P = {(x2, . . . , xM , xM+2, . . . , x2M) | (x1, . . . , x2M) ∈ ∇PQ
G }

and
Q = {(x2, . . . , xN , xN+2, . . . , x2N ) | (x1, . . . , x2N ) ∈ ∇PQ

H }

are projections that are unimodularly equivalent to ∇PQ
G and ∇PQ

H , respectively. Thus,

NVol(∇PQ
G ) = NVol(P ) and NVol(∇PQ

H ) = NVol(Q). Here, P and Q contain the origins of

their respective ambient spaces, so NVol(P⊕Q) = NVol(P ) NVol(Q) = NVol(∇PQ
G ) NVol(∇PQ

H ).
Label the vertices of G+H using [M +N ] by adding M to every vertex label of H . Let

f : R2M+2N → R2M+2N be the map sending (x1, . . . , x2M+2N ) to (xσ(1), . . . , xσ(2M+2N)) where

σ(i) =











i if i ≤ M or i ≥ 2M +N + 1

i+M if M + 1 ≤ i ≤ M +N

i−N if M +N + 1 ≤ i ≤ 2M +N.

Since f only permutes coordinates it is a unimodular transformation. Moreover, the projec-
tion of f(∇PQ

G+H) obtained from dropping the first, (M +1)th, (2M +1)th, and (2M +N)th

coordinates is a lattice-preserving transformation sending ∇PQ
G+H onto P ⊕Q. Therefore,

NVol(∇PQ
G+H) = NVol(f(∇PQ

G+H)) = NVol(P⊕Q) = NVol(P ) NVol(Q) = NVol(∇PQ
G ) NVol(∇PQ

H ),
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proving the result. �

In light of Proposition 3.2, we will focus for the rest of this section on graphs that are
connected unless explicitly stated otherwise. Restricting to when G is connected allows us
to use Theorem 2.8 and therefore we study the sets D(G) directly rather than relying on
properties of their polytopes.

Recall that a graph G is k-connected if for any set X of vertices, |X| < k, the subgraph
G−X is connected. A block of a graph G is an inclusion-maximal 2-connected subgraph of
G.

Theorem 3.3. Suppose G is a connected graph with a block B containing the cut-vertex
v. Setting B′ = G[(V (G) \ V (B)) ∪ {v}] we have

NVol(∇PQ
G ) = NVol(∇PQ

B ) NVol(∇PQ
B′ ).

Proof. By Remark 2.9 we may assume without loss of generality that the cut-vertex is 1,
that V (B) = [M ], and that V (B′) = {1,M + 1, . . . , N}. We claim that the map

f : D(B)×D(B′) → D(G)

which sends
(

(c1, c2, . . . , cM), (c′1, c
′
M+1, . . . , c

′
N)
)

to

(d1, . . . , dN) = (c1 + c′1, c2, . . . , cM , c′M+1, . . . , c
′
N)

is a well-defined bijection.
For notational convenience set c = (c1, c2, . . . , cM) and c′ = (c′1, c

′
M+1, . . . , c

′
N). Since

c ∈ D(B) and c′ ∈ D(B′), we know
∑

ci = M − 1 and
∑

c′i = N − M . Thus, the sum
of entries in f(c, c′) is N − 1, one of the requirements for being D(G)-draconian. Now pick
any sequence 1 ≤ i1 < · · · < ik ≤ N . If ik < M or M < i1 then the corresponding D(G)-
draconian inequality automatically holds. So, suppose there is some positive 1 ≤ ℓ < k for
which

i1 < · · · < iℓ ≤ M < iℓ+1 < · · · < ik.

If 1 < i1 then

di1 + · · ·+ dij = ci1 + · · ·+ ciℓ + c′iℓ+1 + · · ·+ c′k

<

∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(B)(ij)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k
⋃

j=ℓ+1

ND(B′)(ij)

∣

∣

∣

∣

∣

− 1.

Since B and B′ share just a single vertex, we have that
∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(B)(ij)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k
⋃

j=ℓ+1

ND(B′)(ij)

∣

∣

∣

∣

∣

− 1 ≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

.

Chaining these inequalities together, the D(G)-draconian inequality holds. A similar argu-
ment holds if 1 = i1, only here we explicitly write di1 = c1 + c′1 and proceed as before. In
both cases the D(G)-draconian inequality holds, therefore f(c, c′) ∈ D(G).

Showing that f is injective is brief and straightforward, so we omit the details. What
requires slightly more work is showing that f is surjective. Let d = (d1, . . . , dN) ∈ D(G).
We claim that d = f(c, c′) where

c =

(

M − 1−
M
∑

i=2

di, d2, . . . , dM

)

and c′ =

(

N −M −
N
∑

j=M+1

dj, dM+1, . . . , dN

)
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and c ∈ D(B), c′ ∈ D(B′). For notational convenience, we set

c1 = M − 1−
M
∑

i=2

di and c′1 = N −M −
N
∑

j=M+1

dj.

Since it is clear that d = f(c, c′), the majority of the work will be in showing that c ∈ D(B)
and c′ ∈ D(B′). The procedure is analogous for both, so we will only give the details for
showing c ∈ D(B).

By construction, the sum of entries in c is M − 1. Every inequality of the form

(3) di1 + · · ·+ dik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(B)(ij)

∣

∣

∣

∣

∣

with 1 < i1 < · · · < ik ≤ M instantly holds since the neighbors of 2, . . . ,M are the same in
D(G) and D(B). It is also clear that 0 ≤ c1 since, otherwise, d2 + · · ·+ dM > M − 1, which
directly contradicts (3).

Now consider a sum of a subsequence of c of the form

c1 + di1 + · · ·+ dik .

By way of contradiction, suppose that this does not satisfy the correspondingD(B)-draconian
inequality, that is,

c1 + di1 + · · ·+ dik ≥

∣

∣

∣

∣

∣

ND(B)(1) ∪

(

k
⋃

j=1

ND(B)(ij)

)∣

∣

∣

∣

∣

.

Since 1 < i1 < ik ≤ M , this inequality may be rewritten

(4) c1 + di1 + · · ·+ dik ≥

∣

∣

∣

∣

∣

ND(B)(1) ∪

(

k
⋃

j=1

ND(G)(ij)

)∣

∣

∣

∣

∣

.

We also now know that

(5) c′1 + dM+1 + dM+2 + · · ·+ dN = N −M.

Adding the corresponding sides of (4) and (5) and remembering that c1 + c′1 = d1 results in

d1 +
k
∑

j=1

dij +
N
∑

r=M+1

dr ≥

∣

∣

∣

∣

∣

ND(B)(1) ∪

(

k
⋃

j=1

ND(G)(ij)

)∣

∣

∣

∣

∣

+N −M.

Using the fact that B′ contains N −M + 1 vertices,

d1 +

k
∑

j=1

dij +

N
∑

r=M+1

dr ≥

∣

∣

∣

∣

∣

ND(B)(1) ∪

(

k
⋃

j=1

ND(G)(ij)

)∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N
⋃

r=M+1

ND(G)(r)

∣

∣

∣

∣

∣

− 1.

Combining the first two summands on the right side counts the vertex 1 twice, resulting in

d1 +

k
∑

j=1

dij +

N
∑

r=M+1

dr ≥

∣

∣

∣

∣

∣

ND(B)(1) ∪

(

k
⋃

j=1

ND(G)(ij)

)

∪

(

N
⋃

r=M+1

ND(G)(r)

)∣

∣

∣

∣

∣

.

which is a contradiction to d being D(G)-draconian. Therefore the D(B)-draconian inequal-
ities for c all hold, and c ∈ D(B). An analogous argument shows c′ ∈ D(B′), proving f
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is a bijection. This implies |D(B)||D(B′)| = |D(G)|; applying Theorem 2.8 completes the
proof. �

The next result follows quickly from induction and the recurrences proven thus far.

Corollary 3.4. If F is a forest on N vertices with k connected components then we have
NVol(∇PQ

F ) = 2N−k. �

Interestingly, Corollary 3.4 implies that any two trees with the same number of edges will
produce adjacency polytopes with the same normalized volume. This does not happen for
connected graphs in general: as we will show in Example 3.11, NVol(∇PQ

C3
) = 6, which is not

the volume obtained from a path with three edges. Moreover, even though two trees with
the same number of vertices produce adjacency polytopes with equal normalized volumes,
the polytopes themselves are not combinatorially equivalent. Recall that the f -vector of a
polytope P is the vector (f−1, f0, . . . , fdimP ) where fi is the number of i-dimensional faces of
P , using the convention f−1 = 1.

Example 3.5. Let G1 and G2 be graphs on [4]. Let E(G1) = {12, 23, 34} and E(G2) =

{12, 13, 14}. One may verify the that the f -vector of ∇PQ
G1

is

(1, 10, 39, 77, 82, 46, 12, 1)

and the f -vector of ∇PQ
G2

is
(1, 10, 39, 78, 86, 51, 14, 1).

Thus the two polytopes are not combinatorially equivalent even though Theorem 2.8 guar-
antees that their normalized volumes are both 8.

Through the recurrences established so far, we may reduce our work to considering only
2-connected graphs.

3.1. The subdivision recurrence. Given e ∈ E(G) let G : e denote the graph obtained
by subdividing e. Since we are using the convention V (G) = [N ], we will always assume
that V (G : e) = [N + 1]. The main result of this subsection is Theorem 3.10, which gives

a recurrence for NVol(∇PQ
G:e) under mild conditions. Establishing the recurrence requires

multiple lemmas that have similar flavors but are distinct enough to warrant presenting
their proofs.

The next three lemmas describe how to produce D(G :e)-draconian sequences from D(G)-
draconian sequences and D(G\e)-draconian sequences. We use the notation A⊎B to denote
the disjoint union of the sets A and B.

Lemma 3.6. Let G be any connected graph on [N ] with an edge e = uv where degG(u) = 2.
If c ∈ D(G), then α(c) ∈ D(G : e) where α(c) = (c, 1). Moreover, α is an injection.

Proof. Let c ∈ D(G). By Remark 2.9 we may assume that e = {N−1, N} and degG(N−1) =
2. Showing that α is an injection is routine, so we focus mainly on showing α(c) ∈ D(G : e).

Let c = (c1, . . . , cN). Since c1 + · · · + cN = N − 1, the sum of entries of α(c) is N . By
construction, ND(G)(i) = ND(G:e)(i) for i = 1, . . . , N − 2,

ND(G:e)(N − 1) =
(

ND(G)(N − 1) \ {N}
)

∪ {N + 1}

and
ND(G:e)(N) =

(

ND(G)(N) \ {N − 1}
)

∪ {N + 1}.

Pick a sequence 1 ≤ i1 < · · · < ik ≤ N + 1. There are two cases to consider:
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1. {N − 1, N,N + 1} (
⋃k

j=1ND(G:e)(ij) and

2. {N − 1, N,N + 1} ⊆
⋃k

j=1ND(G:e)(ij).

In the first case, we can deduce that ik 6= N + 1 and at most one of N − 1, N appears in
i1, . . . , ik. Therefore,

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

and

ci1 + · · ·+ cik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

.

In the second case, if ik < N + 1, we immediately get

ci1 + · · ·+ cik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

.

Otherwise, ik = N + 1 and
∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

{N + 1} ⊎
k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

+ 1.

This time, we get

ci1 + · · ·+ cik = ci1 + · · ·+ cik−1
+ 1 <

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

+ 1 =

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

.

Since each case results in satisfying the D(G : e)-draconian inequalities, we have shown that
α(c) ∈ D(G : e). �

Lemma 3.7. Let G be a 2-connected graph and let e = uv be any edge. If c ∈ D(G \ e),
then β(c) ∈ D(G : e) where β(c) = α(c) + eu − eN+1. Moreover, β is an injection.

Proof. Arguing that β is injective is routine, so its details are omitted. For what remains,
by Remark 2.9 we may assume that e = {N − 1, N}. We then want to show that, if
c = (c1, . . . , cN) ∈ D(G \ e), then

β(c) = (c1, . . . , cN−2, cN−1 + 1, cN , 0) ∈ D(G : e).

Set β(c) = (β1, . . . , βN+1). Let 1 ≤ i1 < · · · < ik ≤ N + 1 and set ℓ = k if ik < N + 1 and
ℓ = k − 1 if ik = N + 1. If N − 1 6= ij for any j, then

βi1 + · · ·+ βik = ci1 + · · ·+ ciℓ <

∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

.

Otherwise, N − 1 = ij for some j. In this case,
∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

− 1 ≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

− 1.
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Together we have
βi1 + · · ·+ βik = ci1 + · · ·+ cik + 1

<

∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

+ 1

≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

,

and the D(G : e)-draconian inequality holds. Therefore β(c) ∈ D(G : e). �

Lemma 3.8. Let G be a 2-connected graph with an edge e = uv where degG(u) = 2. If
c ∈ D(G), then γ(c) ∈ D(G : e) where γ(c) is formed by the following rule. Set γ′(c) =
α(c)− eu + eN+1.

1. If c /∈ D(G \ e) then
(a) If γ′(c) ∈ D(G : e) then set γ(c) = γ′(c).
(b) If γ′(c) /∈ D(G : e) then set γ(c) = α(c) + eu − eN+1.

2. if c ∈ D(G \ e), then
(a) If γ′(c) ∈ D(G : e) then set γ(c) = γ′(c).
(b) If γ′(c) /∈ D(G : e) then set γ(c) = α(c) + ev − eN+1.

Additionally, γ is an injection.

Proof. As usual, Remark 2.9 allows us to assume e = {N−1, N} and degG(N−1) = 2. This
allows us to more specifically rewrite γ as follows: set γ′(c) = (c1, . . . , cN−2, cN−1 − 1, cN , 2).

1. If c /∈ D(G \ e) then
(a) If γ′(c) ∈ D(G : e) then set γ(c) = γ′(c).
(b) If γ′(c) /∈ D(G : e) then set γ(c) = (c1, . . . , cN−2, cN−1 + 1, cN , 0).

2. if c ∈ D(G \ e), then
(a) If γ′(c) ∈ D(G : e) then set γ(c) = γ′(c).
(b) If γ′(c) /∈ D(G : e) then set γ(c) = (c1, . . . , cN−1, cN + 1, 0).

Throughout the proof we use the notation γ(c) = (γ1, . . . , γN+1).
First suppose c /∈ D(G\e) and γ′(c) /∈ D(G:e), so that γ(c) = (c1, . . . , cN−2, cN−1+1, cN , 0).

We want to show this sequence is D(G : e)-draconian. Assume to the contrary that γ(c) /∈
D(G : e). There must then be a sequence 1 ≤ i1 < · · · < ik ≤ N + 1 for which

(6) γi1 + · · ·+ γik ≥

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

.

Because c ∈ D(G) and ND(G)(ij) ⊆ ND(G:e)(ij) for all ij , (6) could only hold if ij = N − 1
for some j. If ik = N then set ℓ = k and if ik = N + 1 then set ℓ = k − 1. For these cases
we have

k
⋃

j=1

ND(G:e)(ij) = {N + 1} ⊎
ℓ
⋃

j=1

ND(G)(ij).

Putting this into (6), we get

ci1 + · · ·+ ciℓ + 1 = γi1 + · · ·+ γik ≥ 1 +

∣

∣

∣

∣

∣

ℓ
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

,
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contradicting c ∈ D(G). Thus, ik = N − 1.
Since c ∈ D(G) and degG(N − 1) = 2, we know cN−1 ∈ {0, 1, 2}. Therefore, γN−1 ∈

{1, 2, 3}. If γN−1 = 3 then γ′(c) = (c1, . . . , cN−2, 1, cN , 2). However, one may show directly
that this sequence is D(G : e)-draconian, a contradiction. A similar issue occurs if γN−1 = 2,
since, this time, γ′

N−1 = 0. Therefore, γN−1 = 1. By applying an argument similar to that
in the proof of Lemma 3.6, one may again show directly that γ′(c) is D(G : e)-draconian, a
contradiction. Thus, γ(c) ∈ D(G : e).

Now suppose that c ∈ D(G\e) and γ′(c) /∈ D(G:e). Proving that γ(c) = (c1, . . . , cN−1, cN , 0)
follows the proof of Lemma 3.7 almost identically, replacing N − 1 with N . For this reason,
we omit the details.

To show that γ is an injection, we can restrict to comparing the sequences of 1(a) with
those of 2(a) and the sequences of 1(b) with those of 2(b). Fortunately, it is straightforward
to see that no sequence can arise simultaneously as γ(c) under the conditions of 1(a) and
γ(c′) under the conditions of 2(a). If this were possible, we would obtain c = c′, but c cannot
simultaneously be a member of and absent from D(G \ e).

For the remaining case, suppose γ(c) = γ(c′) where γ(c) falls under the conditions of 1(b)
and γ(c′) falls under the conditions of 2(b). Let γ(c′) = (γ′

1, . . . , γ
′
N+1). As we saw previously

in this proof, in order to have γ(c′) ∈ D(G : e) we need γ′
N−1 = 0 since all other possibilities

resulted in a contradiction. However, in γ(c), the same coordinate is cN−1+1 > 0. Thus the
two cannot be equal, causing a contradiction, and γ is injective. �

Fix a particular edge e of a 2-connected graph G for which one of the endpoints has degree
2 in G. Let AG(e), BG(e), and CG(e) be the set of D(G : e)-draconian sequences constructed
from α, β, and γ in Lemmas 3.6, 3.7, and 3.8, respectively.

Lemma 3.9. Let G be a 2-connected graph with an edge e = uv such that degG(u) = 2.
The sets AG(e), BG(e), and CG(e) are pairwise disjoint.

Proof. We continue to use the convention that e = {N − 1, N} and degG(N − 1) = 2. By
comparing the values of cN+1, it is clear that AG(e) ∩ BG(e) = ∅ and AG(e) ∩ CG(e) = ∅.
Thus we only need to focus on BG(e) ∩ CG(e). In fact, since γ is an injection, we only need
to consider elements of CG(e) that fall under the conditions of 1(b) or 2(b) of Lemma 3.8.

Suppose that β(c) = γ(c′) and write

c = (c1, . . . , cN+1) and c′ = (c′1, . . . , c
′
N+1).

If γ(c) satisfies the conditions of 1(b) in Lemma 3.8, it follows that c = c′, which is impossible
since this this requires c /∈ D(G \ e) and c′ ∈ D(G \ e). Thus assume c ∈ D(G \ e). Since
both c, c′ ∈ D(G \ e), we know cN−1, c

′
N−1 ≤ 1. By the definitions of β and γ, we have

c′N−1 = cN−1 + 1 and cN−1 = c′N−1 + 1, so this forces both cN−1 and c′N−1 to be positive,
meaning cN−1 = c′N−1 = 1. This again implies c = c′, which contradicts β(c) = γ(c′) = γ(c).
Therefore, BG(e) ∩ CG(e) = ∅, completing the proof. �

This result, together with the three lemmas preceding it, give AG(e) ⊎ BG(e) ⊎ CG(e) ⊆
D(G:e). It turns out that the reverse inclusion holds, establishing what we call the subdivision
recurrence.

Theorem 3.10 (Subdivision recurrence). Let G be a 2-connected graph with an edge e = uv
where degG(u) = 2. Then D(G : e) = AG(e) ⊎BG(e) ⊎ CG(e) and, consequently,

NVol(∇PQ
G:e) = 2NVol(∇PQ

G ) + NVol(∇PQ
G\e).
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Proof. Again without loss of generality we may assume e = {N−1, N} and degG(N−1) = 2.
By Lemmas 3.6, 3.7, and 3.8,

AG(e) ∪BG(e) ∪ CG(e) ⊆ D(G : e).

For the reverse inclusion, we will show that, given d = (d1, . . . , dN+1) ∈ D(G : e), one of the
following conditions holds:

1. If dN+1 = 2 then (d1, . . . , dN−2, dN−1 + 1, dN) ∈ D(G).
2. If dN+1 = 1 then (d1, . . . , dN) ∈ D(G).
3. If dN+1 = 0 then one of the following is true:

(a) (d1, . . . , dN−2, dN−1 − 1, dN) ∈ D(G \ e);
(b) both (d1, . . . , dN−2, dN−1 − 2, dN , 2) /∈ D(G : e) and (d1, . . . , dN−2, dN−1 − 1, dN) ∈

D(G) \D(G \ e); or
(c) both (d1, . . . , dN−2, dN−1−1, dN−1, 2) /∈ D(G:e) and (d1, . . . , dN−2, dN−1, dN−1) ∈

D(G \ e).

If the second condition holds, then d ∈ AG(e); if condition 3(a) holds, then d ∈ BG(e); if
any of the remaining conditions hold, then d ∈ CG(e).

First suppose dN+1 = 2 and let 1 ≤ i1 < · · · < ik ≤ N . Set (c1, . . . , cN) = (d1, . . . , dN−2, dN−1+
1, dN). If ik < N −1 then ND(G:e)(ij) = ND(G)(ij) for each j, so the corresponding draconian
inequality

ci1 + · · ·+ cik = di1 + · · ·+ dik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

holds. Otherwise, since d ∈ D(G : e),

ci1 + · · ·+ cik ≤ di1 + · · ·+ dik + 2− 1

<

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G:e)(ij)

)

∪ND(G:e)(N + 1)

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G)(ij)

)

⊎ {N + 1}

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

.

Therefore, each D(G)-draconian inequality holds for (c1, . . . , cN), establishing the first con-
dition.

Next suppose dN+1 = 1 and let 1 ≤ i1 < · · · < ik ≤ N . If ik < N − 1 then the
corresponding draconian inequality holds as in the case of dN+1 = 2. If ik ≥ N − 1 then we
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know from d ∈ D(G : e) that

di1 + · · ·+ dik + 1 <

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G:e)(ij)

)

∪ ND(G:e)(N + 1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G)(ij)

)

⊎ {N + 1}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

+ 1.

Subtracting 1 from both sides establishes the corresponding D(G)-draconian inequality for
(d1, . . . , dN). Thus the second condition holds.

Establishing the last condition, where dN+1 = 0, requires the most care. Since degG(N −
1) = 2, we know that dN−1 ∈ {0, 1, 2} and we will treat each case separately.

Suppose dN−1 = 0. Our aim will be to show that condition 3(c) holds. It is clear that
(d1, . . . , dN−2, dN−1 − 1, dN − 1, 2) /∈ D(G : e) since dN−1 − 1 < 0. Now, if dN = 0 then there
is a contradiction, since this implies

N = d1 + · · ·+ dN−2 <

∣

∣

∣

∣

∣

N−2
⋃

j=1

ND(G:e)(j)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N−2
⋃

j=1

ND(G)(j)

∣

∣

∣

∣

∣

= N.

Thus, dN > 0.
Set (c1, . . . , cN) = (d1, . . . , dN−1, dN −1). If ci1 + · · ·+cik with ik < N−1, then the desired

D(G)-draconian inequality holds using the same argument as for the previous conditions. If
ik = N − 1 then

ci1 + · · ·+ cik = di1 + · · ·+ dik−1
<

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

.

Lastly, if ik = N , then

ci1 + · · ·+ cik = di1 + · · ·+ dik − 1

<

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G\e)(ij)

)

⊎ {N + 1}

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

.

Therefore, if dN−1 = 0 then condition 3(c) holds.
Next suppose dN−1 = 2. Condition 3(c) clearly cannot hold since this condition requires

dN−1 ≤ 1, so we must show that either 3(a) or 3(b) holds. Suppose that condition 3(a) does
not hold, that is, suppose (d1, . . . , dN−2, 1, dN) /∈ D(G \ e). Showing that this sequence is
in D(G) can be done directly repeating our by-now-usual strategies, so the sequence is in
D(G) \D(G \ e).
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To show that (d1, . . . , dN−2, 0, dN , 2) /∈ D(G :e), observe that (d1, . . . , dN−2, 1, dN) /∈ D(G\
e) implies there is some inequality of the form

(7) di1 + · · ·+ dik ≥

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

with ik = N and ik−1 < N − 1. If N − 1 /∈
⋃k

j=1ND(G\e)(ij) then add 2 to both sides of (7)
to get

di1 + · · ·+ dik + 2 ≥

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

+ 2

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G\e)(ij)

∣

∣

∣

∣

∣

+
∣

∣{N − 1, N + 1}
∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G:e)(ij)

∣

∣

∣

∣

∣

,

which would imply (d1, . . . , dN−2, 0, dN , 2) /∈ D(G :e). If N−1 ∈
∣

∣

∣

⋃k

j=1ND(G\e)(ij)
∣

∣

∣
then add

2 to the left side of (7) and 1 =
∣

∣{N}
∣

∣ to the right side; the conclusion is the same. Thus, if
condition 3(a) does not hold then condition 3(b) does hold.

For the case of when dN−1 = 1, the first part of condition 3(b) clearly holds. Verifying that
(d1, . . . , dN−2, 0, dN) ∈ D(G) is now routine, so either condition 3(a) holds or 3(b) holds.

We have shown that, regardless of value of dN+1, one of the three conditions holds, hence
d ∈ AG(e)∪BG(e)∪CG(e) and D(G :e) = AG(e)∪BG(e)∪CG(e). By Lemma 3.9, this union
is disjoint, so

|D(G : e)| = |AG(e) ⊎BG(e) ⊎ CG(e)|

= |AG(e)|+ |BG(e)|+ |CG(e)|

= 2|D(G)|+ |D(G \ e)|.

Applying Theorem 2.8, the result is proven. �

Example 3.11. Consider C3 = ([3], {12, 13, 23}) and let e = 13; there are six D(C3)-
draconian sequences:

(2, 0, 0) (0, 2, 0) (0, 0, 2)
(1, 1, 0) (1, 0, 1) (0, 1, 1)

Subdividing e replaces 13 with edges 34 and 14 to obtain C4. By the subdivision recurrence,
D(C4) = D(C3 : e) = AC3(e) ⊎BC3(e) ⊎ CC3(e). Following the definitions of α, β, and γ we
obtain

AC3(e) = {(2, 0, 0, 1), (0, 2, 0, 1), (0, 0, 2, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}

BC3(e) = {(1, 2, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 1, 1, 0)}

CC3(e) = {(1, 0, 0, 2), (1, 0, 2, 0), (0, 1, 0, 2), (0, 0, 1, 2), (0, 1, 2, 0), (0, 2, 1, 0)}.

Notice that |D(C3)| = 3 · 21 and |D(C4)| = 4 · 22.

Example 3.11 can be easily generalized to all cycles through induction, leading to our first
formula for a 2-connected graph.

Corollary 3.12. For every N -cycle CN , NVol(∇
PQ
CN

) = N2N−2. �
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The subdivision recurrence does not necessarily hold if we allow both endpoints of e to
have degree larger than 2 in G. For example, if G = K1 ∨ P3, where P3 is the path on three
vertices, and e is the edge of G whose endpoints each have degree 3 in G, then one may show
that NVol(∇PQ

G:e) = 50 whereas

2NVol(∇PQ
G:e) + NVol(∇PQ

G\e) = 2(18) + 16 = 52.

Question 3.13. Under what conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(∇PQ

G:e)?

3.2. The triangle recurrence. The framework which establishes the subdivision recur-
rence can be adapted to a different operation. Given an edge e = uv of a graph G, let G△e
denote the graph with edge set E(G)∪ {uw, vw} where w is a new vertex. We will continue
to assume V (G) = [N ] and V (G△e) = [N + 1]. As in Section 3.1, establishing a recurrence
formula for D(G△e) will require establishing several smaller results first. The first two of
these have proofs analogous enough to the proofs of Lemma 3.6 and Lemma 3.7, respectively,
that we omit their details.

Lemma 3.14. Let G be any connected graph on [N ] and e any edge. If c ∈ D(G), then
α△(c) ∈ D(G△e) where α△(c) = (c, 1). Moreover, α△ is injective. �

Lemma 3.15. Let G be a connected graph on [N ] and let e = uv be an edge with degG(u) =
2. If c ∈ D(G), then β△(c) ∈ D(G△e) where

β△(c) = α△(c) + eu − eN+1.

Additionally, β△ is injective. �

The next lemma is analogous to Lemmas 3.8, but this time its proof is different enough for
us to justify providing it. It will be helpful to introduce the analogues of AG(e) and BG(e)

here: let A
△
G(e) and B

△
G (e) be the D(G△e)-draconian sequences constructed with α△ and

β△, and γ△ in Lemmas 3.14 and 3.15, respectively.

Lemma 3.16. Let G be a connected graph on [N ] and let e = uv be an edge for which
degG(u) = 2. If c ∈ D(G), then γ△(c) ∈ D(G△e) where

γ△(c) =

{

α△(c) + ev − eN+1 if not in B
△
G(e)

α△(c)− eu + eN+1 otherwise.

Additionally, γ△ is injective.

Proof. That γ△ is injective is clear. For what remains, by Remark 2.9 we again assume
without loss of generality that e = {N−1, N} and degG(N−1) = 2. So, if c = (c1, . . . , cN) ∈
D(G), then we must prove γ△(c) ∈ D(G△e) where

γ△(c) =

{

(c1, . . . , cN−2, cN−1, cN + 1, 0) if not in B
△
G(e)

(c1, . . . , cN−2, cN−1 − 1, cN , 2) otherwise.

Note that, in both cases, the entries sum to N .
If γ△(c) = (c1, . . . , cN−2, cN−1, cN + 1, 0) then showing it is D(G△e)-draconian is entirely

analogous to the proof of Lemma 3.15. Otherwise, γ△(c) = (c1, . . . , cN−2, cN−1 − 1, cN , 2).
Since we are in this case, we know cN−1 ≥ 1, so all entries of γ△(c) are nonnegative.
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Let γ△(c) = (γ△
1 , . . . , γ△

N+1) and 1 ≤ i1 < · · · < ik ≤ N + 1. If ik < N + 1 then the
corresponding D(G△e)-draconian inequality holds due to c ∈ D(G), to γij ≤ cij for each j,
and to NG(ij) ⊆ NG△e(ij) for each j. If ik = N + 1 and ij = N for some j, then

γ△
i1
+ · · ·+ γ△

ik
= γ△

i1
+ · · ·+ γ△

ik−1
+ 1 <

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

+ |
{

N + 1
}

| =

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

.

Lastly, suppose ik = N + 1 and ij 6= N − 1 for all j. If N − 1 is not a neighbor of ij for
any j < k, then

γ△
i1
+ · · ·+ γ△

ik
= γ△

i1
+ · · ·+ γ△

ik
<

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

+ |
{

N − 1, N + 1
}

| ≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

.

Otherwise, we know that

k
⋃

j=1

ND(G△e)(ij) = ND(G△e)(N − 1) ∪
k
⋃

j=1

ND(G△e)(ij).

Since cN−1 ≤ degG(N − 1) = 2, we know cN−1 = 0 or cN−1 = 1.
If cN−1 = 0 then

γ△
i1
+ · · ·+ γ△

ik
= ci1 + · · ·+ cik−1

+ cN−1 + 1

<

∣

∣

∣

∣

∣

ND(G△e)(N − 1) ∪
k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

where the first inequality follows from having proven α△(c) ∈ D(G△e) in Lemma 3.14. If
cN−1 = 1 then

γ△
i1
+ · · ·+ γ△

ik
= ci1 + · · ·+ cik−1

+ cN−1

<

∣

∣

∣

∣

∣

ND(G△e)(N − 1) ∪
k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

.

In all cases, we have shown γ△(c) ∈ D(G△e), which completes the proof. �

Let C△
G (e) be the D(G△e)-draconian sequences constructed from γ△ in Lemma 3.16. The

proof of the following is completely analogous to the proof of Lemma 3.9.

Lemma 3.17. Let G be a graph having an edge e = uv with degG(u) = 2. The sets A△
G (e),

B
△
G (e), and C

△
G (e) are pairwise disjoint. �

As in Section 3.1, the previous four lemmas imply A
△
G (e) ⊎ B

△
G (e) ⊎ C

△
G (e) ⊆ D(G△e).

The reverse inclusion again holds, establishing what we call the triangle recurrence.
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Theorem 3.18 (Triangle Recurrence). Let G be any connected graph on [N ] for which
e = uv with degG(u) = 2. Then

NVol(∇PQ
G△e) = 3NVol(∇PQ

G ).

Proof. As usual we assume V (G) = [N ], e = {N−1, N}, and degG(N−1) = 2. Lemmas 3.14,
3.15, and 3.16 show that

A
△
G (e) ∪B

△
G(e) ∪ C

△
G (e) ⊆ D(G△e),

so we must show the reverse inclusion holds. Let d = (d1, . . . , dN+1) ∈ D(G△e). As with
the subdivision recurrence, there are three statements we must show:

1. If dN+1 = 1, then (d1, . . . , dN) ∈ D(G);
2. If dN+1 = 0, then one of (d1, . . . , dN−2, dN−1 − 1, dN) and (d1, . . . , dN−2, dN−1, dN − 1)

is in D(G); and

3. If dN+1 = 2 then both (d1, . . . , dN−2, dN−1+1, dN+1) ∈ B
△
G (e) and (d1, . . . , dN−2, dN−1+

1, dN) ∈ D(G).

First suppose dN+1 = 1 and pick anyD(G△e)-draconian sequence of the form (d1, . . . , dN , 1).
Let 1 ≤ i1 < · · · < ik ≤ N . If ij 6= N −1, N for all j then the neighbors of ij are the same in
D(G△e) and D(G), so the corresponding D(G)-draconian inequality instantly holds. Oth-
erwise,

di1 + · · ·+ dik = di1 + · · ·+ dik + 1− 1

<

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G△e)(ij)

)

∪ND(G△e)(N + 1)

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G△e)(ij)

)

∪
{

N + 1
}

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

Thus (d1, . . . , dN) ∈ D(G).
Next, suppose dN+1 = 0. Since dN−1, dN , dN+1 cannot all be 0, we know dN−1 > 0 or

dN > 0. Suppose first that dN = 0, in which case dN−1 > 0. Set

d′ = (d′1, . . . , d
′
N) = (d1, . . . , dN−2, dN−1 − 1, dN)

and
d′′ = (d′′1, . . . , d

′′
N) = (d1, . . . , dN−2, dN−1, dN − 1)

and consider a sequence 1 ≤ i1 < · · · < ik ≤ N . If ik < N − 1 then the corresponding
D(G)-draconian inequality for d′ holds since the neighbors of ij are the same in D(G△e)
and D(G). If ik = N − 1 then

d′i1 + · · ·+ d′ik = di1 + · · ·+ dik − 1

<

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣
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Lastly consider when ik = N . Since we are currently assuming dN = 0, we use our previous
cases to directly show

d′i1 + · · ·+ d′ik = d′i1 + · · ·+ d′ik−1
<

∣

∣

∣

∣

∣

k−1
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

.

Under these assumptions, d′ ∈ D(G). The analogous argument holds if dN−1 = 0, in which
case d′′ ∈ D(G).

We still must consider when both dN−1, dN ≥ 1. Consider d′ and select a sequence 1 ≤
i1 < · · · < ik ≤ N . If ik < N or if ik = N and ik−1 = N − 1 then the corresponding
D(G)-draconian inequalities hold for d′ as before. For the case of ik = N and ik−1 < N − 1,
notice that for any such sequence,

(8) di1 + · · ·+ dik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

− 1.

This is because, when comparing the above inequality to the inequality corresponding to
1 ≤ i1 < · · · < ik−1 < N − 1 < ik = N using the same indices i1, . . . , ik, the fact that that
(d1, . . . , dN+1) is D(G△e)-draconian and degG(N − 1) = 2 means that the left side of

(9) di1 + · · ·+ dik−1
+ dN−1 + dik <

∣

∣

∣

∣

∣

ND(G△e)(N − 1) ∪
k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

.

adds a value at least 1 while the right side of (9) is greater than that of (8) by at most 1.
Since we know (9) holds, (8) must also hold. Therefore,

di1 + · · ·+ dik <

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G△e)(ij)

∣

∣

∣

∣

∣

− 1 =

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

.

This completes all cases for when dN+1 = 0.
Lastly, suppose dN+1 = 2. For this case we first show that (d1, . . . , dN−1 + 1, dN + 1) ∈

B
△
G (e). This can be rephrased as wanting to show (d1, . . . , dN−1 + 1, dN + 1) = β△(c) for

some c, or, in yet other words, that (d1, . . . , dN−1, dN + 1) ∈ D(G).
This time set d′ = (d′1, . . . , d

′
N) = (d1, . . . , dN−1, dN + 1) and consider 1 ≤ i1 < · · · < ik ≤

N . If ik < N − 1 then the D(G)-draconian inequality holds as usual. If ik = N − 1 then
observe

d′i1 + · · ·+ d′ik < di1 + · · ·+ dik + 2− 1

<

∣

∣

∣

∣

∣

(

k
⋃

j=1

ND(G)(ij)

)

∪ ND(G)(N)

∣

∣

∣

∣

∣

− 1

=

∣

∣

∣

∣

∣

k
⋃

j=1

ND(G)(ij)

∣

∣

∣

∣

∣

.

If ik = N then repeat this argument but by inserting “+1 − 1” instead of “+2 − 1”. In
all cases, the D(G)-draconian inequality holds, so d′ ∈ D(G), as needed. In fact, showing
that (d1, . . . , dN−2, dN−1 + 1, dN) is D(G)-draconian has an entirely analogous argument.
Therefore, this completes the case for dN+1 = 2.
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By Lemma 3.17,
D(G△e) = A

△
G(e) ⊎B

△
G (e) ⊎ C

△
G (e).

Thus,
|D(G△e)| = |A△

G(e)|+ |B△
G(e)|+ |C△

G (e)| = 3|D(G)|.

Finally, by Theorem 2.8, we obtain

NVol(∇PQ
G△e) = 3NVol(∇PQ

G ). �

Example 3.19. Let C3 be the 3-cycle as in Example 3.11 and again choose e = 13. The
D(G△e)-draconian sequences are formed from the disjoint union of the three sets

A
△
C3
(e) = {(2, 0, 0, 1), (0, 2, 0, 1), (0, 0, 2, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}

B
△
C3
(e) = {(3, 0, 0, 0), (1, 2, 0, 0), (1, 0, 2, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 1, 1, 0)}

C
△
C3
(e) = {(1, 0, 0, 2), (0, 2, 1, 0), (0, 0, 3, 0), (0, 1, 0, 2), (0, 0, 1, 2), (0, 1, 2, 0)}

As in the case of the subdivision recurrence, by relaxing the requirement that e has an
endpoint of degree 2 in G, the result may no longer hold. The same example as before,
where G = K1∨P3 and e is the edge whose endpoints each have degree 3 in G, demonstrates
this. The normalized volume of ∇PQ

G△e is 52 whereas a naive attempt to apply the triangle
recurrence would predict 54.

Question 3.20. Under what conditions for a graph G and an edge e is there a “nice”
recurrence for NVol(∇PQ

G△e)?

3.3. Application: Outerplanar graphs. Recall that a plane graph is a planar graph G
together with a particular embedding of G into the plane. Also recall that the weak dual

of a plane graph G, denoted G(∗), is the subgraph of the dual G∗ induced by the vertices
corresponding to bounded faces of G. We denote by Ek the empty graph on k vertices, that
is, the disjoint union of k distinct vertices. Further, given a bounded face F , let oG(F )
denote the number of edges of G bounding both F and the outer face and let vF denote the
vertex of G(∗) corresponding to F . Let F(G) be the set of bounded faces of G.

Definition 3.21. Let G be a plane graph. The extended weak dual of G, denoted G(∗∗), is

G(∗∗) = G(∗) ∪





⋃

F∈F(G)

vF ∨ Eo(F )





Informally, G(∗∗) extends the weak dual of G by including an additional edge for each edge
of G that bounds the outer face. See Figure 2 for illustrations of a plane graph G and its
duals G(∗), G(∗∗).

Recall that a graph is outerplanar if it has a planar embedding such that every vertex is
incident to the outer face. It is known [7] that a graph is outerplanar if and only if its weak
dual is a forest. Putting together the results of Section 3 we can produce a simple formula
for NVol(∇PQ

G ) whenever G is outerplanar and can be constructed inductively by using the
subdivision and triangle operations. The formula follows quickly from the following theorem.

Theorem 3.22. Suppose G is a 2-connected plane graph on [N ] for which G(∗∗) is a tree
and every vertex of G(∗∗) is a leaf or adjacent to at least one leaf. Then

NVol(∇PQ
G ) = 2N−2|F(G)|

∏

F∈F(G)

degG(∗∗)(vF ).
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Figure 2. A graph G (gray) with its weak dual G(∗) superimposed (left,
dashed) and with its extended weak dual G(∗∗) superimposed (right, dotted).

Proof. We induct on the number of internal vertices of G(∗∗), that is, |V (G(∗))|. If |V (G(∗))| =
1, then G = CN for some N . By Corollary 3.12,

NVol(∇PQ
CN

) = N2N−2.

Since |L(CN
(∗∗))| = N and |F(CN)| = 1, the formula holds.

Now suppose there are k > 1 internal vertices of G(∗∗). Choose a vertex w of G(∗∗) which
is adjacent to a leaf, and let S be the leaves of G(∗∗) adjacent to w, that is,

S = NG(∗∗)(w) ∩ L(G(∗∗)).

Let G′ be the subgraph of G whose extended weak dual is G(∗∗) − S. Here, w is a leaf, so
G(∗∗) − S is still a tree where each vertex is a leaf or adjacent to a leaf. By the inductive
assumption,

NVol(∇PQ
G′ ) = 2|L(G

′(∗∗))|−2|F(G′)|
∏

F∈F(G′)

degG′(∗∗)(vF )

= 2|L(G
(∗∗))|−|S|−2|F(G)|+2

∏

F∈F(G′)

degG′(∗∗)(vF ).

To obtain the desired formula, we must show that by applying appropriate recurrences, we
end up multiplying the above by

2|S|−2 degG(∗∗)(w).

Doing so is a straightforward application of the triangle recurrence and |S| − 2 applications
of the subdivision recurrence. �

Theorem 3.22 is the final piece needed to compute NVol(∇PQ
G ) for any outerplane graph

whose 2-connected components satisfy the conditions of Theorem 3.22.

Corollary 3.23. Let G be any outerplane graph on [N ] such that each bounded face is
adjacent to the outer face. Label its components G1, . . . , Gk and let Bi,1, . . . , Bi,bi be the
blocks of Gi. Then

�(10) NVol(∇PQ
G ) =

k
∏

i=1

bi
∏

j=1

2|V (Bi,j)|−2|F(Bi,j)|
∏

F∈F(Bi,j)

degBi,j
(∗∗)(vF ).
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The graphs satisfying the conditions needed in Corollary 3.23 form a proper, but large,
class of outerplane graphs. Experimental data suggests that the formula is, in fact, true for
all outerplane graphs, but a proof eludes the authors.

Conjecture 3.24. For any outerplane graph G, Equation (10) holds.

4. Beyond outerplanarity

Outerplanar graphs form a large class of graphs but are far from the class of planar
graphs, let alone all graphs. For example, even though there are about 56.7 × 109 labeled
outerplanar graphs on 10 vertices, these account for only approximately 1.76% of all labeled
planar graphs on 10 vertices [8, Sequences A098000, A066537]. Because of the difficulty in

computing NVol(∇PQ
G ) for all graphs, a natural next step would be to consider graphs that

are not-quite-outerplanar. Toward this end, we use the following alternate characterization
of outerplanar graphs.

Theorem 4.1 ([1, Theorem 10.24]). A graph is outerplanar if and only if contains no
subdivision of K4 or K2,3 as a subgraph.

This is a direct analogue of Kuratowski’s theorem, allowing one to study graphs G that
contain no subdivision ofK5 orK3,3 but may contain a subdivision ofK4 orK2,3. In this case,
a formula for |D(G)| remains elusive, although we do have the following partial result. We
use the notation K0

M,N to denote the complete bipartite graph with partite sets [0, . . . ,M−1]
and [M,M +N − 1].

Proposition 4.2. For all N ≥ 3,

NVol(∇PQ
K2,N−2

) = 2N−4(N2 −N + 6)− 2.

Proof. If (c1, . . . , cN) ∈ D(K2,N−2) then c1 + c2 = k for some 0 ≤ k ≤ N − 1. All pos-
sible choices of c1, c2 are part of a D(K2,N−2)-draconian sequence except for (c1, c2) ∈
{(N − 1, 0), (0, N − 1)} since these are the only two resulting in sequences not satisfying
the corresponding draconian inequalities. However, for the moment, we will include these in
our calculations for algebraic ease.

In order to satisfy the D(K2,N−2)-draconian inequalities we need the subsequence c′ =
(c3, . . . , cN) to be a weak composition of N − 1− k using 0s, 1s, and 2s such that there is at
most one 2. This leads to two cases: if c′ contains a 2, then there must be N − 3− k copies
of 1 and k copies of 0. A simple counting argument gives

(N − 2)

(

N − 3

k

)

such possibilities. On the other hand if c′ does not contain any 2s, then there must be
N − 1− k copies of 1 and k − 1 copies of 0. There are

(

N−2
k−1

)

such possibilities. Adding the
values from these two cases and summing over all k yields

N−1
∑

k=0

(k + 1)

(

(N − 2)

(

N − 3

k

)

+

(

N − 2

k − 1

))

.

The reader may verify that this simplifies to 2N−4(N2−N +6). Subtracting the two compo-
sitions where (c1, c2) ∈ {(N − 1, 0), (0, N − 1)} and applying Theorem 2.8 gives us our final
formula. �
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Question 4.3. What is NVol(∇PQ
KM,N

) for arbitrary M,N?

Notice that the formula in Proposition 4.2 cannot be written in the form of (10). Thus, a
general formula for planar graphs will require refining the techniques of Section 3 or separate
tools altogether.

A second important class of graphs which are planar but not outerplanar is the class of
wheel graphs WN = K1 ∨ CN . We conjecture the following.

Conjecture 4.4. For all N ≥ 3,

NVol(∇PQ
WN

) = 3N − 2N + 1.

This conjecture has been verified for all 3 ≤ N ≤ 13. Wheels were examined in detail
in [5] within a related, but distinct, context from ∇PQ

WN
. We hope to uncover similarly rich

structure in the present setting. It may be useful to recognize that

3N − 2N + 1 = 2S(N + 1, 3) + S(N + 1, 2) + S(N + 1, 1),

where S(n, k) denotes the Stirling number of the second kind.
Finally, we give another broad class of graphs which contains all outerplanar graphs but

not all planar graphs. Strictly speaking, these graphs will allow for repeated edges, but as
repeating an edge in G does not affect ∇PQ

G , we need not worry about that case.
Following [6], first consider the directed graphs formed in the following way. Begin with

a single edge and designate one vertex the source and another vertex the sink. This is an
example of a two-terminal series-parallel graph. All other two-terminal series-parallel graphs
are those formed by applying one of the following operations to two existing two-terminal
series-parallel graphs G and H with sources g and h and sinks g′ and h′, respectively,

1. parallel composition: produce a new graph P(G,H) by identifying g with h and g′

with h′. The source of P(G,H) is g ∼ h and its sink is g′ ∼ h′.
2. series composition: produce a new graph S(G,H) by identifying g′ with h. The source

of S(G,H) is g and its sink is h′.

A graph G is a series-parallel graph if there are two vertices x, y such that, when designating
x as the source and y as the sink, G can be obtained through a sequence of applications of
P(·, ·) and S(·, ·) when starting with a disjoint union of edges.

Series-parallel graphs are of interest in computer algorithms, as recognizing them is difficult
but not intractable. For our purposes, they are of interest because their recursive structure
suggests that they may be good candidates for computing NVol(∇PQ

G ). In fact, we have
already seen an example of a series-parallel graph: K2,N−2 is the parallel composition of
N − 2 copies of P3, each of which is a series composition of two edges. We ask the following
question broadly, and would be interested in seeing answers to even nontrivial subclasses
which are not outerplanar.

Question 4.5. What is NVol(∇PQ
G ) for a series-parallel graph G?
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