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Abstract. The Bernshtein-Kushnirenko-Khovanskii theorem provides a generic root count for system of Laurent
polynomials in terms of the mixed volume of their Newton polytopes which has since been known as
the BKK bound. A recent and far-reaching generalization of this theorem is the study of birationally
invariant intersection index by Kaveh and Khovanskii. In this paper we generalize the BKK bound
in the direction of the birationally invariant intersection index, and the main result allows the
application of BKK bound to Laurent polynomial systems that has algebraic relations among the
coefficients. Applying this result, we establish the birationally invariant intersection index for a
well-studied algebraic Kuramoto equations.
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1. Introduction. The famous Bernshtein-Kushinirenko-Khovanskii theorem [2, 9, 10, 12,
13] relates the root counting problem for system of polynomial equations and the theory of
convex bodies. In particular, it shows that the generic number of isolated solutions a system
of Laurent polynomial equations has in the algebraic torus (C*)" = (C\ {0})" equals the
mixed volume of the Newton polytopes of the Laurent polynomials.

Recently, a far-reaching generalization of this theorem is developed in a series of works [6,
7, 8] by K. Kaveh and A. Khovanskii where the root counting question is considered for
much more general spaces of rational functions. Given an irreducible n-dimensional complex
algebraic variety X and n-tuple of finite dimensional vector spaces (Lq,..., L,) of rational
functions on X, for generic elements f; € L; for i = 1,...,n, the number of common solutions
a system f; = --- = f, = 0 has in X is a constant, and it is given by the mixed volume
of Newton-Okunkov boides associated with Lq,..., L,. This generic root count is given the
name birationally invariant intersection index.

In this paper we generalized the theory of Bernshtein-Kushnirenko-Khovanskii bound (or
BKK bound) toward the direction of the birationally invariant intersection index: we show
that under certain conditions, the birationally invariant intersection index coincide with the
BKK bound even though the space of functions are not generated by monomials, but instead
are spans of Laurent polynomials.

This paper is structured as follows. Section 2 review necessary concepts and notations. In
section 3 we establish the main theorem. An application of this theorem to the well-studied
Algebraic Kuramoto equations is described in section 4, and we conclude in section 5.
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2. Preliminaries. A Laurent monomial in x = (x1,...,%,) is a product x* = z{* - -z
for some a = (ay,...,a,) € Z". A Laurent polynomial is a C- linear combination of Laurent
monomials of the form f(x) = ) .gcax® where the finite set S C Z", collecting all the
exponent vectors, is its support. The convex hull conv(S) of the support is the Newton
polytope of f, denoted by Newt(f). With respect a vector v € R™, its initial form inity(f) is

the expression ), (8), CaX™ where (S)y C S is the subset on which the linear functional (v, )

is minimized over S. C[z7,...,z;] denotes the set of all Laurent polynomials in 1, ..., ,.

Computing the number of common roots for a system of Laurent polynomials (a Laurent
polynomial system) is an important problem in algebraic geometry. Since the exponents
may be negative, the natural space to study this root counting question is the algebraic
torus (C*)™ = (C\ {0})". While the root count of a Laurent polynomial system can vary
greatly depending on the coefficients, for “generic” coefficients, however, the (C*)"-root count
remains a constant and only depends on the monomial structure of the system. D. Bernshtein
showed this constant is precisely the “mixed volume” of the Newton polytopes. Given two
sets A, B C R", their Minkowski sum is A+ B = {a+b | a € Ab € B}. For convex
polytopes Pi,..., P, C R", the volume Vol(A P, + - - -+ A\, P,) is a homogeneous polynomial
in A\1,..., A, [14]. The coefficient of the mixed term A; --- )\, is known as the mized volume
of these polytopes, denoted by MVol(Py, ..., P,).

Theorem 1 (D. Bernshtein 1975 [2]). Given a Laurent polynomial system f = (f1,..., fn)
with fi(x) =) .cg. Ci,aX® where X = (x1,...,2y), if for all nonzero vectors v € R, the initial
system inity (f) has no zero in (C*)", then all zeros of f in (C*)" are isolated, and the total
number, counting multiplicity, is the mized volume MVol(conv(St),...,conv(S,)).

Lemma 2 (D. Bernshtein 1975 [2]). Given a Laurent polynomial system £ = (f1,..., fn)
with f;(x) = ZaGSi Ci.aX® where x = (x1,...,%y), for generic choices of the coefficients {c;a},
the initial system inity (f) has no solution in (C*)™ for any nonzero vector v € R".

This bound is known as the Bernshtein-Kushnirenko-Khovanskii (BKK) bound, after a
circle of closely related works by Bernshtein [2], Kushnirenko [10, 12, 13], and Khovanskii [9].
Here, the notion of “generic choices” is to be interpreted in terms of Zariski topology — within
the space of all possible coefficients, there is a Zariski-open set for which this bound is exact.

Recently, this result is generalized considerably into the theory of birationally invariant
intersection index. Instead of considering Laurent polynomials with generic coefficients, which
can be thought of as generic linear combinations of Laurent monomials, one could consider
generic linear combinations of rational functions with more structure. In the most general
setting, as studied in [7, 8], one starts with C-vector spaces L, ..., L, where each L; is the span
of finitely many rational functions @Q;1,...,Qsm, on an irreducible toric variety X, then for
generic choices of functions f1 € Ly, ..., f, € L,, the number of common isolated solutions of
(f1,---, fn) = 0in X is a constant that is independent of the choices. That number, is known
as the birationally invariant intersection index of Lq,..., L, and is denoted by [L1,..., Ly].
This grand theory relates the root counting problem to the geometric properties of Newton-
Okunkov bodies, and the BKK bound is thus a special case of this intersection index in the
situations where each L; is spanned by Laurent monomials. In the following, we extend the
BKK bound to certain cases where each L; is spanned by Laurent polynomials.
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3. The main theorem. The goal here is to show the equality of birationally invariant
intersection index and the BKK bound under certain geometric conditions and thereby gen-
eralize the theory of BKK bound. We focus on the cases where X = (C*)" and Ly, ..., L, are
vector spaces of rational functions spanned by finitely many Laurent polynomials. That is,

(1) Li = spanc{ Py}

where each P;; € (C[acft, ...,xF] and m; € ZT. This setup is a generalization of the situation
in Theorem 1 where each L; is only spanned by a set of Laurent monomials. That is, if each
P;j is a Laurent monomial, then [L1, ..., L,] is exactly the BKK bound. The main result here
is a generalization the BKK bound to include cases where each P;; is a Laurent polynomial.

A generic element f; € L;, is a Laurent polynomial f; = Z;”:Zl ci; P with generic choice
of the coeflicients ¢;1, ..., cim,. It is easy to see that among the terms within such a generic
element, there is no cancellations and consequently Newt(f;) = conv <U§”:1'1 Newt(Rj)). It is

therefore reasonable to define

Newt(L;) = conv ( ;-n:il NeWt(Pij)) .

Theorem 3. Let L1,. .., Ly, be vector spaces of rational functions with L; = spanC{Pij};n:il
where each P;j € C[xf,...,x,il] and m; € Z* as described above. If for each i = 1,...,n,
dim(Newt(L;)) = n and every positive-dimensional proper faces of Newt(L;) intersect Newt(P;;)[]
at no more than one point for each j =1,...,m;, then
(2) [L1,...,L,] =MVol(Newt(Ly),...,Newt(Ly,)).

Proof. Let fi1,..., fn be generic elements in L1, ..., L, respectively, i.e., f; = Z;n:ll cij Pij
for generic coefficients {¢;j}. Then the common root count of the system £ = (fi,..., fn)
in (C*)" equals [L1,...,Ly]. It is therefore sufficient to show the root count of f in (C*)"

matches the BKK bound, i.e., f satisfies the conditions in Theorem 1.

Let v € R" be a nonzero vector such that inity(f) does not contain a unit (i.e., no
component of f is a single Laurent monomial term). Since Newt(f;) = Newt(L;) is assumed
to be full-dimensional for ¢ = 1,...,n, v must be a common inner normal vector for n proper
positive dimensional faces Fi,..., F,, of Newt(f1),...,Newt(f,) respectively.

For each ¢ = 1,...,n, let A;; = F; N Newt(F;;), then, by assumption, each A;; contains
at most one point. Without loss of generality, after re-indexing P;;’s, we can assume that
for a fixed i, A;; = {ay;} for j = 1,...,m}; and A;; = @ for j = m] + 1,...,m; where
m) € Z" and m] < m; (since F; N Newt(P;;) may be empty for some j). With this definition,
{ain,. .., a;m} = U;n:ll A;j, and consequently,

inity (fi) € spanc{x®1, ..., x ™}

More importantly, we can see the set of coefficients is a subset of the coefficients in f;. Indeed,

/
m;

inity (f;) = Z CigX*I
j=1
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with the exponent vectors a;1, . .., a;, all lie in a proper face of Newt(L;) and the coefficients
ci;’s being independent from one another. By Lemma 2, there exists a nonempty Zariski open
set in the coefficient space {c;;} for which the initial system init, (f) has no solution in (C*)".

Note that there are only finitely many distinct initial systems for f. By taking the in-
tersection of a finite number of nonempty Zariski open set, we can see that there remains a
nonempty Zariski open set in the coefficient space {c;;} such that for all choices in this set,
inity (f) either contains a unit or has no solution in (C*)™ for any nonzero vector v € R".

By Theorem 1, for generic choices of the coefficients {c;;}, the BKK bound for f is exact,
i.e., the common root count in (C*)™ for this system is exactly MVol(Newt(f1), ..., Newt(f,)).
Recall that each f; is a generic member of L;. This shows

[L1,...,Ly] = MVol(Newt(L1), ..., Newt(Ly) ). -

4. Application to Kuramoto equations. The Kuramoto model [11] is a ubiquitous model
for studying the phenomenon of spontaneous synchronization of a network of coupled oscil-
lators, and it has found important applications in many independent fields of studies. The
algebraic synchronization equation [1, 3, 5, 4] for a Kuramoto model of n + 1 oscillators is a

system of n Laurent polynomial equations in the n variables x = (z1,...,z,) given by
n

(3) fi(X)Zwi—ZOaij(x;—x]i> fori=1,...,n
]:

where {w; };-; and {ai;}; jefo,...n} are complex constants, and zg = 1.

Theorem 4. For generic choices of the complex constants {w;};; and {ai;}; jeo,..n}, the
number of isolated complex solutions to the system (3) is exactly the BKK bound of the system.

Proof. For each i € {1,...,n} and j € {0,...,n} we define

T X
Py = o2
IL‘J’ Ty

Then each P;; is a Laurent polynomial in the variables x = (z1,...,2,), and Newt(P;;) =

conv{e; —e;,e;—e;} where ey = 0. So for each pair (i, j), Newt(P;;) is a line segment through
the origin.
Now consider the vector space of rational functions

It is easy to verify that f; € L; for each i = 1,...,n. Therefore the statement to be proved is
equivalent to the claim that [Lq,..., L,| equals the BKK bound of the system (fi,..., fn).
By definition,
Newt(L;) = conv(0 U {e; —e;, ej —e;};_),
and, in it, 0 is an interior point. For n > 1, Newt(L;) is the convex hull of n affinely indepen-
dent line segments through the origin, and thus dim(Newt(L;)) = n for every i. Moreover,
fixing 4, for each j = 0,...,n and j # i, Newt(F;;) is a line segment passing though an inte-
rior point, the origin, of Newt(L;). Therefore for each proper positive dimensional face F' of
Newt(L;), F' N Newt(P;;) is either empty or a single point. By Theorem 3, the generic root
count in (C*)", i.e., [L1,..., Ly] is exactly the BKK bound. [ ]
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5. Conclusions. In this short paper, we extend the classical BKK bound theory to cer-
tain cases where each Laurent polynomial is a generic linear combination of several Laurent
polynomials. The main result (Theorem 3) establishes a sufficient condition under which the
birationally invariant intersection index equals exactly the BKK bound. This condition is
stated purely in terms of the combinatorial information in the Newton polytopes of the poly-
nomials involved and can be checked easily using simple algorithms from convex geometry. It
shows that certain algebraic relations among the coefficients have no effect on the exactness of
the BKK bound. The usefulness of this result is demonstrated through an application to the
algebraic Kuramoto equations — a well studied family of equations used to model spontaneous
synchronization phenomenon in many fields. With this theorem, we easily established a pre-
viously unknown fact: the BKK bound agrees with the generic number of complex solutions
even though this system has inherent algebraic relations among the coefficients.
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