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Abstract. Numerical nonlinear algebra is a computational paradigm that uses numeri-
cal analysis to study polynomial equations. Its origins were methods to solve systems of
polynomial equations based on the classical theorem of Bézout. This was decisively linked
to modern developments in algebraic geometry by the polyhedral homotopy algorithm of
Huber and Sturmfels, which exploited the combinatorial structure of the equations and led
to efficient software for solving polynomial equations.

Subsequent growth of numerical nonlinear algebra continues to be informed by algebraic
geometry and its applications. These include new approaches to solving, algorithms for
studying positive-dimensional varieties, certification, and a range of applications both within
mathematics and from other disciplines. With new implementations, numerical nonlinear
algebra is now a fundamental computational tool for algebraic geometry and its applications.

In honor of Bernd Sturmfels on his 60th birthday

1. Introduction

Bernd Sturmfels has a knack for neologisms, minting memorable mathematical terms that
pithily portray their essence and pass into general use. Nonlinear algebra [65] is a Sturmfelian
neologism expressing the focus on computation in applications of algebraic geometry, the
objects that appear in applications, and the theoretical underpinnings this inquiry requires.
Numerical nonlinear algebra is numerical computation supporting nonlinear algebra. It is
complementary to symbolic computation (also a key input to nonlinear algebra), and its
development has opened up new vistas to explore and challenges to overcome.

Sturmfels did not create this field, but his work with Huber introducing the polyhedral
homotopy algorithm [50] catalyzed it. This algorithm exemplifies Sturmfels’ mathematical
contributions, exploiting links between algebra and geometric combinatorics to address prob-
lems in other areas of mathematics, in this case the ancient problem of solving equations. He
was also important for its development with his encouragement of researchers, early decisive
use of its methods [9, 91], and by popularizing it [12].

In Section 2 we describe polynomial homotopy continuation and its basic use to solve
systems of polynomial equations. We develop the background and present some details of
the polyhedral homotopy algorithm in Section 3. Numerical algebraic geometry, which uses
these tools to represent algebraic varieties on a computer, is presented in Section 4, along
with new methods for solving equations that this perspective affords. A welcome and perhaps
surprising feature is that there are often methods to certify the approximate solutions these
algorithms provide, which is sketched in Section 5. We close this survey by presenting three
domains in which numerical nonlinear algebra has been applied in Section 6.
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2. What is Polynomial Homotopy Continuation?

Polynomial Homotopy Continuation is a numerical method to compute complex-number
solutions to systems of polynomial equations,

(1) F (x1, . . . , xn) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 = 0 ,

where fi(x1, . . . , xn) ∈ C[x1, . . . , xn] for 1 ≤ i ≤ m. A point z ∈ Cn is a regular zero of F
if F (z) = 0 and the Jacobian matrix JF of F at z has rank n. Necessarily, m ≥ n. When
m = n, the system is square and the corresponding Jacobian matrix is a square n×n matrix.

The underlying idea is simple: to solve F (x) = 0, we construct another system G(x) = 0
of polynomial equations with known zeroes, together with a homotopy. This is a family
of systems H(x, t) for t ∈ C interpolating between F and G in that H(x, 0) = F (x) and
H(x, 1) = G(x). Considering one zero, y, of G(x) and restricting to t ∈ [0, 1], H(x, t) = 0
defines a solution path x(t) ⊂ Cn such that H(x(t), t) = 0 for t ∈ [0, 1] and x(1) = y. The
path is followed from t = 1 to t = 0 to compute the solution z = x(0). This is equivalent to
solving the initial value problem

(2)
∂

∂x
H(x, t)

( d

dt
x(t)

)
+
∂

∂t
H(x, t) = 0 , x(1) = y .

This Davidenko differential equation [23, 24] is typically solved using a standard predictor-
corrector scheme (see Section 2.4). We say that x(1) = y gets tracked towards x(0). For this
to work, x(t) must be a regular zero of H(x, t) = 0 for every t ∈ (0, 1]. Nonregular solutions
at t = 0 are handled with specialized numerical methods called endgames [70].

So far, there is nothing special about polynomials—all we need is for F , G, and H to be
analytic. However, when F is a system of polynomials, we can construct a start system G
with known zeroes such that for every isolated zero z of F , there is at least one zero of G
that gets tracked towards z. That is, we may compute all isolated zeros of F .

Garćıa and Zangwill [38] proposed polynomial homotopy continuation and a classic refer-
ence is Morgan’s book [67]. The textbook by Sommese and Wampler [84] is now a standard
reference. Historically, the first implementation with wide acceptance was PHCpack [94], fol-
lowed a decade later by Bertini [5], which is also widely used. Later came the HOM4PS family
[20, 59], NAG4M2 [60], and HomotopyContinuation.jl [14]. NAG4M2 implements interfaces to
many of these other packages, for example, see [39].

We will now explain polynomial homotopy continuation in more detail. We first discuss
what is meant by numerical method and solution (a synonym for zero) of a system.

2.1. The solution to a system of polynomial equations. A solution to the system (1)
is a point z ∈ Cn satisfying (1). The collection of all such points is an algebraic variety,

(3) V = {z ∈ Cn | f1(z) = · · · = fm(z) = 0} .
This defines solutions z implicitly, using just the definition of F . It is hard to extract
any information other than “z is a solution to F” from this representation. A more useful
representation of V is given by a Gröbner basis [91, 92].

Consider a simple example of two polynomial equations in two variables,

(4) x2 + y2 − 1 = x2 − y3 − y − 1 = 0 ,
2



describing the intersection of two plane curves. A Gröbner basis is {y3 +y2 +y, x2 +y2−1}.
Its triangularity facilitates solving. The first equation, y3+y2+y = 0, has the three solutions
0, (−1 ±

√
−3)/2. Substituting each into the second gives two solutions, for six solutions

altogether. While these equations can be solved exactly, one cannot do this in general. A
Gröbner basis is an equivalent implicit representation of V from which we may transparently
extract numerical invariants such as the number of solutions or the dimension and degree of
V . Finer questions about individual solutions may require computing them numerically.

Numerical methods only compute numerical approximations of solutions to a system (1).
Thus (1.271 + .341

√
−1 , −.500 + .866

√
−1) is an approximation of a solution to (4). A

numerical approximation of a point z ∈ V is any point y ∈ Cn which is in some sense
close to z. For example, we could require that y is within some tolerance ε > 0 of z, i.e.,
|y − z| < ε. Consequently, the concept of zero of (or solution to) a polynomial system is
replaced by an approximate zero (defined in Section 2.4). This is fundamentally different
than using exact methods like Gröbner bases, where the goal is to handle the true exact zeros
of polynomial systems. As an approximate zero is not a true zero, a numerical computation
does not yield all the information obtained in an exact computation. On the other hand, a
numerical computation is often less costly than a symbolic computation. Other advantages
are that the architecture of modern computers is optimized for floating point arithmetic and
that numerical continuation is readily parallelized (see Remark 4).

Despite not containing all the information of true zeroes, we discuss in Section 5 how to
use approximate zeroes to obtain precise and provable results.

2.2. The Parameter Continuation Theorem. Our discussion of homotopy continuation
assumed that solution paths exist. The Parameter Continuation Theorem by Morgan and
Sommese [69] asserts this when the homotopy arises from a path in parameter space.

Suppose the system of polynomials (1) depends on k parameters p = (p1, . . . , pk) ∈ Ck.
Write F (x; p) for the polynomial system corresponding to a particular choice of p, and
further suppose that the map p 7→ F (x; p) is smooth. For example, the parameters may be
the coefficients in F . Consider the incidence variety

(5) Z = {(x,p) ∈ Cn × Ck | F (x; p) = 0} ⊆ Cn × Ck .

Let π1 : Z → Cn and π2 : Z → Ck be the projections onto the first and second factors. The
map π1 identifies points in the fiber π−12 (p) with solutions to F (x; p) = 0.

Theorem 1 (Parameter Continuation Theorem). For p ∈ Ck, let N(p) be the number of
regular zeroes of F (x; p) = 0. There exists a proper algebraic subvariety B ⊂ Ck and a
number N , such that N(p) ≤ N for p ∈ Ck and N(p) = N when p 6∈ B.

Set U := CkrB and suppose that γ(t) : [0, 1]→ Ck is a continuous path. Write p0 := γ(0).

(1) If γ([0, 1]) ⊂ U , then the homotopy F (x; γ(t)) defines N continuous, isolated smooth
solution paths x(t).

(2) If γ((0, 1]) ⊂ U , then as t→ 0, the limits of the solution paths, if they exist, include
all the isolated solutions to F (x; p0) = 0. This includes both regular solutions and
solutions with multiplicity greater than one.

At points t ∈ [0, 1] with γ(t) ∈ U where γ is differentiable, x(t) is differentiable.

The point of this theorem is that any path satisfying γ((0, 1]) ⊂ U can be used for
homotopy continuation, so that G(x) = F (x; γ(1)) is the start system. Since the branch
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locus B = CkrU is a subvariety, it has real codimension at least two and typical paths in
the parameter space Ck do not meet B. Call π2 : Z → Ck a branched cover. Theorem 1
can be generalized, replacing the parameter space Ck by an irreducible variety [84, Theorem
7.1.4]. A parameter homotopy is one arising from a path γ such as in Theorem 1(2).

The Parameter Continuation Theorem follows from Bertini’s Theorem, other standard
results in algebraic geometry, and the implicit function theorem. A proof is given in [69].

Example 2. Figure 1 shows possibilities for homotopy paths x(t), when Theorem 1(2) holds.
The start system G(x) at t = 1 has N = 5 regular zeros, and each lies on a unique path

0 t 1

Figure 1. Homotopy Paths.

x(t) for t ∈ (0, 1]. One path has no finite limit as t → 0, while the other four have limits.
Two have unique limits; the endpoint of one at t = 0 is the regular zero of the target system
F (x), while the endpoint of the other is not an isolated zero of F (x). Two paths have the
same limit, and their common endpoint is an isolated zero of F (x) of multiplicity two. �

2.3. The total degree homotopy. To reach all isolated zeros of the target system, the
start system must have at least as many zeros as the target system. Thus, an upper bound on
the number of isolated zeros is often needed to choose a homotopy. One such upper bound is
provided by Bézout’s Theorem: The number of isolated zeros of the system F = (f1, . . . , fn)
is at most d1d2 · · · dn, where di = deg fi for i = 1, . . . , n. It inspires start systems of the form

(6)

 b0x
d1
1 − b1

...
b0x

dn
n − bn

 .

For nonzero complex numbers b0, b1, . . . , bn ∈ Cr{0}, this start system is outside the branch
locus B and it has d = d1d2 · · · dn solutions, which are all are easily computed. This gives
the total degree homotopy,

(7) H(x1, . . . , xn, t) = t ·

 b0x
d1
1 − b1

...
b0x

dn
n − bn

 + (1− t) ·

 f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 .

Such a convex combination of two similar systems is called a straight-line homotopy. The
straight line homotopy is a particular case of a parameter homotopy. For general choices of
the parameters bi the smoothness conditions of Theorem 1(2) hold [84, Thm. 8.4.1].
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Example 3. The total degree homotopy for the system (4) has the form

(8) H(x, y, t) = t ·
[
b0x

2 − b1
b0y

3 − b2

]
+ (1− t) ·

[
x2 + y2 − 1

x2 − y3 − y − 1

]
.

For b0, b1, b2 ∈ Cr{0}, the start system H(x, y, 1) = (b0x
2 − b1, b0y3 − b2) has six distinct

complex zeros, all of which are regular, and the zero set of H(x, y, t) consists of six paths
in C2 × [0, 1], each smoothly parameterized by t for almost all choices of b0, b1, b2. The
parameter b0 is used to avoid cancellation of the highest degree terms for t ∈ (0, 1]. �

The phrase “almost all” in this example is because the set of choices of bi for which the
paths are singular (they meet the branch locus B of Theorem 1) has measure zero. Such
situations occur frequently in this field, often referred to as probability one.

2.4. Path-tracking. Path-tracking is the numerical core of homotopy continuation.
Suppose that H(x, t) for x ∈ Cn and t ∈ C is a homotopy with target system F (x) =

H(x, 0) and start system G(x) = H(x, 1). Further suppose that for t ∈ (0, 1], H(x, t) = 0
defines smooth paths x(t) : (0, 1]→ Cn such that each isolated solution to F is connected to
at least one regular solution to G through some path, as in Theorem 1(2). By the Implicit
Function Theorem, each isolated solution to G is the endpoint x(1) of a unique path x(t).
Lastly, we assume that all regular solutions to G are known.

Given this, the isolated solutions to F may be computed as follows: For each regular
solution x(1) to G, track the path x(t) from t = 1 towards t = 0. If it converges, then
x(0) = limt→0 x(t) satisfies F (x(0)) = 0, and this will find all isolated solutions to F .

The path x(t) satisfies the Davidenko differential equation, and thus we may compute
values x(t) by solving the initial value problem (2). Consequently, we may use any numerical
scheme for solving initial value problems. This is not satisfactory for solving nonlinear
polynomial systems due to the propagation of error.

As the solution paths x(t) are defined implicitly, there are standard methods to mitigate
error propagation. Let E be a system of n polynomials. Given a point z0 where the Jacobian
JE of E is invertible, we may apply the Newton operator NE to z0, obtaining z1,

(9) z1 := NE(z0) := z0 − (JE(z0))
−1E(z0) .

We explain this: if we approximate the graph of the function E by its tangent plane at
(z0, E(z0)), then z1 ∈ Cn is the unique zero of this linear approximation. There exists a
constant 0 < c < 1 such that when z0 is sufficiently close to a regular zero z of E, we have
quadratic convergence in that

‖z1 − z‖ ≤ c‖z0 − z‖2 .
This is because z is a fixed point of NE at which the derivative of NE vanishes. The inequality
follows from standard error estimates from Taylor’s Theorem for NE in a neighborhood of z.
A consequence is that when z0 is sufficiently close to a regular zero z, each Newton iterate
starting from z0 doubles the number of accurate digits. Such a point z0 is an approximate
zero of F . This leads to algorithms to certify numerical output as explained in Section 5.

Predictor-corrector algorithms for solving the initial value problem for homotopy paths
take a discretization 1 = t0 > t1 > · · · > tm = 0 of the interval [0, 1] and iteratively compute
approximations x(1) = x(t0),x(t1), . . . ,x(tm) = x(0) to points on the solution path x(t).
This requires an initial approximation x0 to x(t0) = x(1). Then, for k = 0, . . . ,m−1, given
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an approximation xk to x(tk), a prediction x̂k+1 for x(tk+1) is computed. This typically uses
one step in an iterative method for solving the initial value problem (a local solver). This
is the predictor step. Next, one or more Newton iterations NE for E(x) = H(x, tk+1) are
applied to x̂k+1 to obtain a new approximation xk+1 to x(tk+1). This is the corrector step.
Predictor steps generally cause us to leave the proximity of the path being tracked; corrector
steps bring us back. The process repeats until k = m−1.

There are a number of efficient local solvers for solving initial value problems. They
typically use approximations to the Taylor series for the trajectory x(t) for t near tk. For
example, the Euler predictor uses the tangent line approximation,

x̂k+1 = xk + ∆tk∆xk where
∂H

∂x
(xk, tk) ·∆xk +

∂H

∂t
(xk, tk) = 0 .

Here, ∆tk = tk+1 − tk and (∆xk, 1) spans the kernel of the Jacobin JH(xk, tk).
Figure 2 illustrates an Euler prediction followed by Newton corrections. It suggests a

predictor
��	

x̂k+1

corrector�

xk+1���)

xk
�
�	

x(tk+1)
�
���

x(tk)
�
���

ε-neighborhood
6

tk+1

∆tk

tk

Figure 2. Euler prediction followed by Newton corrections. The image is
adapted from [13] (we thank Sascha Timme for allowing us to use his figure).

stopping criterion for Newton iterations based on a fixed tolerance ε. Another is to apply
Newton iterations until quadratic convergence is observed.

Remark 4. Since each solution path defined by H(x, t) = 0 may be tracked independently,
path-tracking is (in the words of Jan Verschelde) pleasingly parallelizable, which is a strength
of polynomial homotopy continuation. �

We hardly mentioned the state of the art in path-tracking methods. There is a significant
literature on other predictor-corrector schemes (see [16, Sections 15–18] for an overview),
practical path-tracking heuristics [6, 93], and endgames for dealing with issues that arise
near t = 0, such as divergent [68] or singular paths [70]. Indeed, the methods we describe
suffice only for the most well-conditioned paths ending at regular solutions at t = 0.

2.5. Squaring up. It is common to need to solve overdetermined systems, which have more
equations than variables. This presents a challenge as both the total degree homotopy
of Section 2.3 and the polyhedral homotopy from the next section enable us to find all
isolated solutions to a square system F (x) = 0 of polynomial equations. Let us discuss an
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example, and then explain the method of squaring up, which reduces the problem of solving
overdetermined systems to that of solving square systems.

Example 5. Let A,B,C be the following 2× 3 matrices,

A :=

(
1 3 5
2 4 6

)
, B :=

(
2 3 7
2 5 −11

)
and C :=

(
1 −1 1
−2 3 −7

)
.

We ask for the matrices of the form D(x, y) := A + Bx + Cy that have rank 1. This is
given by the vanishing of the three 2× 2 minors of D(x, y). This overdetermined system of
equations in x, y has three solutions:

(10) (−4
5
, 3
5
) , (−0.15019, 0.16729) , (−0.95120, 2.8373) .

We may find these using the total degree homotopy as follows. The determinants of the first
two columns and the last two columns of D(x, y) give a square subsystem of the system of
three minors, and these have 4 = 2 · 2 solutions (the Bézout number). In addition to the
three solutions in (10), the fourth is (−13/14, 3/14). Let f(x, y) be the remaining minor.
Then f(−13/14, 3/14) = −963/98, while the three solutions in (10) evaluate (close to) zero.
This is a simplification of the general scheme. �

Let F be an overdetermined system consisting of m polynomials in n variables, where
m > n. Squaring up F replaces it by a square system G(x) := MF (x) as follows: Let M
be a (randomly chosen) n×m complex matrix, so that G(x) consists of n polynomials, each
of which is a linear combination of polynomials in F (x). Next, find all isolated solutions to
G(x) = 0. Since the solutions of F (x) = 0 are among those of G(x) = 0, we need only to
determine the zeros of G which are not zeros of F . A simple way is to evaluate F at each of
the zeros of G and discard those that do not evaluate to zero (according to some heuristic).
It is numerically more stable to apply the Newton operator for the overdetermined system
F [25] to the zeros of G and retain those which converge quadratically. Example 5 is a
simplification, using a very specific matrix M rather than a randomly chosen matrix.

Remark 6. Suppose that the overdetermined system F (x) depends on a parameter p ∈ Ck,
i.e., we have F (x) = F (x; p), and that for a general parameter p ∈ Ck the system of equa-
tions F (x; p) has N > 0 isolated solutions (as in the Parameter Continuation Theorem 1).
Suppose further that we have already computed all the solutions of F (x; p0) = 0 for a fixed
parameter p0 ∈ Ck (either by squaring up or by using another method). Then, we can use
the Newton operator for overdetermined systems from [25] for homotopy continuation along
the path F (x; tp0 + (1− t)p) for any other parameter p. �

3. Polyhedral homotopy

The total degree homotopy from Section 2.3 computes all isolated zeroes to any system
of polynomial equations. Its main flaw is that it is based on the Bézout bound. Many
polynomial systems arising in nature have Bézout bound dramatically larger than their
number of zeroes; for these, the total degree homotopy will track many excess paths.

Example 7. Consider the following problem, posed in [26]: Find the distance from a
point x∗ ∈ Rd to a hypersurface given by the vanishing of a single polynomial f . A first step

7



is to compute all critical points of the distance function ‖x−x∗‖ for f(x) = 0. We formulate
this using a Lagrange multiplier λ,

f(x) = 0 and λ(x− x∗) = ∇f(x) .

When d = 2, f = 5− 3x22 − 3x21 + x21x
2
2, and x∗ = (0.025, 0.2), these become

(11) 5− 3x22 − 3x21 + x21x
2
2 = 0 and λ

[
x1 − 0.025
x2 − 0.2

]
=

[
−6x1 + 2x1x

2
2

−6x2 + 2x21x2

]
,

which are polynomials in x1, x2, λ of degrees 4, 3, 3, respectively. The system (11) has 12
solutions. We show the corresponding critical points below.

Note that a total degree homotopy for solving (11) follows 36 > 12 homotopy paths. �

An alternative general-purpose homotopy is the polyhedral homotopy of Sturmfels and
Huber. This is based on Bernstein’s bound, which is at most the Bézout bound and at least
the actual number of isolated zeros. Bernstein’s bound is often significantly smaller than
the Bézout bound, which makes the polyhedral homotopy an efficient tool for polynomial
homotopy continuation because it produces fewer excess paths to track.

The Polyhedral Homotopy Algorithm is summarized in Algorithm 3.1 below. It is imple-
mented in PHCpack [94], the HOM4PS family [20, 59], and HomotopyContinuation.jl [14].
To understand how it works we first develop some theory. We begin with Bernstein’s bound.

3.1. Bernstein’s bound. The polyhedral homotopy takes place on the complex torus (C×)n,
where C× := C r {0} is the set of invertible complex numbers. Each integer vector a ∈ Zn
gives a Laurent monomial xa := xa11 · · ·xann , which is a function on the torus (C×)n. A linear
combination of Laurent monomials,

f :=
∑
a∈A

cax
a ca ∈ C× ,

is a Laurent polynomial. The (finite) index set A ⊂ Zn is the support of f . The convex hull
of A is the Newton polytope of f . The polynomial f in Example 7 has support the columns
of the matrix ( 0 0 2 2

0 2 0 2 ) and its Newton polytope is the 2× 2 square, [0, 2]× [0, 2].
Bernstein’s bound concerns square systems of Laurent polynomials, and it is in terms of

mixed volume [31, pp. 116–118]. The Minkowski sum of polytopes P and Q in Rn is

P +Q := {x + y | x ∈ P and y ∈ Q} .

Given polytopes P1, . . . , Pn in Rn and positive scalars t1, . . . , tn, Minkowski proved that the
volume vol(t1P1+· · ·+tnPn) is a homogeneous polynomial in t1, . . . , tn of degree n. He defined
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the mixed volume MV(P1, . . . , Pn) to be the coefficient of t1 · · · tn in that polynomial. While
mixed volume is in general hard to compute, when n = 2, we have the formula

(12) MV(P,Q) = vol(P +Q)− vol(P )− vol(Q) .

This formula and its generalizations to n > 2 are the polarization identities.
Consider (12) for the 2× 2 square and triangle below.

(13) P = Q = P +Q =

The final shape is the Minkowki sum P + Q, and the mixed volume MV (P,Q) is the sum
of the areas of the two (non-square) parallelograms, which is 8.

We give a version of Bernstein’s Theorem [7, Thm. A].

Theorem 8 (Bernstein). Let F = (f1, . . . , fn) be a system of Laurent polynomials. The
number of isolated solutions to F in (C×)n is at most MV(P1, . . . , Pn), where for each i =
1, . . . , n, Pi is the Newton polytope of the polynomial fi.

Example 9. We show the supports and Newton polytopes of the three polynomials from
Example 7, f , λ(x1 − x∗1)− ∂f/∂x1, and λ(x2 − x∗2)− ∂f/∂x2 (see Equation (11)).

λ

x1

x2

λ

x1

x2

λ

x1

x2

Their mixed volume is twelve, so the system (11) achieves the Bernstein bound. �

Bernstein proved that this bound is typically achieved in the following sense: For each
i = 1, . . . , n, let Ai be the support of polynomial fi and Pi its Newton polytope. The set
of polynomial systems G = (g1, . . . , gn) where each gi has support a subset of Ai is a vector
space V of dimension |A1| + · · · + |An| whose coordinates are given by the coefficients of
the polynomials gi. Bernstein showed that there is a nonempty Zariski open subset U ⊂ V
consisting of systems G with exactly MV(P1, . . . , Pn) regular zeroes. Also, if U ′ is the (larger)
set of systems G with exactly MV(P1, . . . , Pn) solutions, counted with multiplicity, then U ′

is open, and Bernstein [7, Thm. B] gave a criterion for when G ∈ V r U ′.
We remark that Bernstein’s bound and Bernstein’s Theorem are often called the Bernstein-

Kushnirenko-Khovanskii (BKK) bound and BKK Theorem due to their joint paper [8] and
the circle of closely related work [7, 53, 55].

3.2. Polyhedral homotopy of Huber and Sturmfels. In their seminal work [50], Huber
and Sturmfels developed a homotopy continuation method for solving systems of Laurent
polynomials that takes advantage of Bernstein’s bound in that it tracks only MV(P1, . . . , Pn)
paths. Their work also provided a new interpretation for mixed volume in terms of mixed
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cells (the parallelograms in (13)) and a new proof of Bernstein’s Theorem [7, Thm. A]. We
sketch its main ideas. This is also described in Sturmfels’ award-winning Monthly article [90].

Suppose that F = (f1, . . . , fn) is a system of Laurent polynomials and that Ai is the
support of fi for i = 1, . . . , n, so that

(14) fi =
∑
a∈Ai

ci,ax
a , with ci,a ∈ C× .

For now, assume that F is sufficiently generic, in that F has MV(P1, . . . , Pn) regular zeroes.
In the polyhedral homotopy, the continuation parameter t appears in a very different way

than in the total degree homotopy (7). First, the start system is at t = 0 and the target
system F is at t = 1, but this is not the primary substantive difference. The polyhedral
homotopy depends upon a choice of lifting functions, ωi : Ai → Z, for i = 1, . . . , n. That is,
a choice of an integer ωi(a) for each monomial a in Ai. We address this choice later.

Given lifting functions, define the homotopy H(x, t) := (h1, . . . , hn) by

hi(x, t) :=
∑
a∈Ai

ci,a xa tωi(a) .

By the Implicit Function Theorem and our assumption on F , over t ∈ (0, 1] the system of
equations H(x, t) = 0 defines MV(P1, . . . , Pn) smooth paths. It is however not at all clear
what happens as t→ 0. For example, H(x, 0) is undefined if some ωi(a) < 0, and if ωi(a) > 0
for all i and a, then H(x, 0) is identically zero.

The key idea is to use an invertible linear change of coordinates to study the homotopy
paths as t → 0. This coordinate change depends upon a weight α ∈ Zn and a positive
integer r. The weight gives a cocharacter of the torus, for s ∈ C×, sα := (sα1 , . . . , sαn). Set

y = x ◦ s−α := (x1s
−α1 , . . . , xns

−αn) .

Then x = y ◦ sα, and we have H(α)(y, s) := (h
(α)
1 , . . . , h

(α)
n ), where for i = 1, . . . , n,

(15) h
(α)
i (y, s) := s−βihi(y ◦ sα, sr) =

∑
a∈Ai

ci,a ya s〈α,a〉+rωi(a)−βi ,

where βi := min{〈α, a〉+ rωi(a) | a ∈ Ai}. The purpose of βi is to ensure that s appears in

h
(α)
i (y, s) with only non-negative exponents, and that h

(α)
i (y, 0) is defined and not identically

zero. Specifically, if A(α)
i := {a ∈ Ai | 〈α, a〉+ rωi(a) = βi}, then

(16) h
(α)
i (y, 0) =

∑
a∈A(α)

i

ci,ay
a for i = 1, . . . , n .

The purpose of the positive integer r is to keep the exponents integral. As r > 0, we have
that for s ∈ [0, 1], t = sr → 0 if and only if s→ 0. Thus the role of r and s is to parameterize
the homotopy path. We remark on this later.

We will see that for almost all (α, r), H(α)(y, 0) has no zeroes, but for appropriately chosen
(α, r), the system H(α)(y, 0) has easily computed zeroes, each defining a homotopy path to
a solution of H(α)(y, 1) = H(x, 1). For such an (α, r), H(α)(y, 0) is a start subsystem.
The polyhedral homotopy algorithm consists of determining those (α, r), solving the start
subsystems H(α)(y, 0), and then tracking the homotopy paths from t = 0 to t = 1.

Before discussing this in more detail, including the role of the choices of lifting functions ωi,
cocharacter α, and positive integer r, let us consider an example.
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Example 10. Let f1 be the biquadratic from Example 7 and let f2 = 1 + 2x1x2 − 5x1x
2
2 −

3x21x2. Here, A1 = ( 0 0 2 2
0 2 0 2 ) and A2 = ( 0 1 1 2

0 1 2 1 ). Their Newton polygons are the square P
and triangle Q in (13). Figure 3 shows their 8 = MV(P,Q) common zeroes.

f2

f2

f2

f1 f1
f1

f1 f1

−2 2 4

−2

2

Figure 3. Common zeroes of f1 and f2.

Define ω1 to be identically zero and set ω2 ( ab ) := a+ b. Then h1(x, t) = f1(x) and

h2(x, t) = 1 + 2x1x2t
2 − 5x1x

2
2t

3 − 3x21x2t
3 .

Let α = (0,−3) and r = 2, so that x1 = y1 and x2 = y2t
−3. Then we may check that

β1 = −6 and β2 = min{0− 0, 4− 3, 6− 6, 6− 3} = 0, so that

h
(α)
1 (y, s) = −3y22 + y21y

2
2 + s6(5− 3y21) ,

h
(α)
2 (y, s) = 1− 5y1y

2
2 + s(2y1y2 − 3y21y2s

2) .

The underlined terms are the binomials h
(α)
1 (y, 0) and h

(α)
2 (y, 0). They have four solutions,

(
√

3, 75−
1
4 ) , (

√
3,−75−

1
4 ) , (−

√
3, 75−

1
4 ) , (−

√
3,−75−

1
4 ) .

These four solutions lead to four homotopy paths, which is fewer than the 8 = MV(P,Q)
paths defined by H(x, t) = 0 over t ∈ (0, 1].

If we let γ = (−3, 0) and r = 2, then

h
(γ)
1 (y, s) = −3y21 + y21y

2
2 + s6(5− 3y22) ,

h
(γ)
2 (y, s) = 1− 3y21y2 + s(2y1y2 − 5y1y

2
2s

2) ,

so that h
(γ)
1 (y, 0) and h

(γ)
2 (y, 0) are again binomials and they have four solutions

(27−
1
4 ,
√

3) , (−27−
1
4 ,
√

3) , (27−
1
4 ,−
√

3) , (−27−
1
4 ,−
√

3) .

These lead to the other four homotopy paths. The partition 4 + 4 = 8 is seen in the
decomposition of P + Q in (13). The weight α corresponds to the parallelogram on the

upper left, which is the Minkowski sum of the supports of the components h
(α)
1 (y, 0) and

h
(α)
2 (y, 0) of the start subsystem, and the weight γ corresponds to the parallelogram on

the lower right. The only weights and positive integers for which the start subsystem has
solutions are positive multiples of (α, 2) and (γ, 2). �

11



3.3. Computation of mixed cells. In Example 10 only two choices of (α, r) gave start
subsystems H(α)(y, 0) with solutions. We now address the problem of computing the pairs
(α, r), such that H(α)(y, 0) has solutions. This leads to an algorithm that computes these
pairs given the start system F = (f1, . . . , fn). We will show that the pairs (α, r) which give
zeros at t = 0 correspond to certain mixed cells in a decomposition of the Minkowski sum
P1 + · · ·+ Pn, where Pi is the Newton polytope of fi.

We examine the geometric combinatorics of the lifting functions ωi, weights α, and positive
integer r. Let P ⊂ Rn+1 be a polytope. If P has the same dimension as its projection to Rn,
then it and all of its faces are lower faces. Otherwise, replace Rn+1 by the affine span of P
and assume that P has dimension n + 1. A lower facet of P is a facet Q of P (dimQ = n)
whose inward-pointing normal vector has positive last coordinate. A lower face of P is any
face lying in a lower facet. The union of lower faces forms the lower hull of P .

Let A ⊂ Zn be a finite set and ω : A → Z be a lifting function. The lift of A is the set

Â := {(a, ω(a)) | a ∈ A} ⊂ Zn+1 .

Let P̂ := conv(Â) be its convex hull. Given a lower face Q of P̂ , the projection to Zn of Q∩Â
is a subset C(Q) of A whose convex hull is the projection to Rn of Q. If (α, r) is upward-
pointing (r > 0) and a 7→ 〈α, a〉+ rω(a) achieves its minimum on Q, then C(Q) = A(α).

For each i = 1, . . . , n, let Ai ⊂ Zn be a finite set, ωi : Ai → Z be a lifting function, and

set P̂i := conv(Âi). Let P̂ := P̂1 + · · · + P̂n be their Minkowski sum. As P̂ is a Minkowski

sum, if Q is a lower face of P̂ , for each i = 1, . . . , n there is a lower face Qi of P̂i with

(17) Q = Q1 + · · ·+Qn .

Definition 11. Lifting functions ωi : Ai → Z for i = 1, . . . , n are generic if for each lower
facet Q of P , if Q1, . . . , Qn are the lower faces in (17), then

(18) dimQ = n = dimQ1 + · · ·+ dimQn ,

and when dimQi = 1, then #Qi ∩ Âi = 2 and thus #C(Qi) = 2.

A lower facet Q for which every Qi in (18) has dimension 1 (and thus #Qi ∩ Âi = 2) is
a mixed facet and its projection to Rn is a mixed cell. Mixed facets and mixed cells are
parallelepipeds (Minkowski sums of independent line segments). �

Huber and Sturmfels show that almost all real lifting functions are generic and the density
of rational numbers implies that there exist generic integral lifting functions. Setting Pi :=

conv(Ai) for i = 1, . . . , n, then the projection to Rn of the lower faces of P̂ forms a polyhedral
subdivision of the Minkowski sum P1 + · · ·+ Pn, called a mixed decomposition.

This leads to a new interpretation for mixed volume.

Theorem 12 (Huber-Sturmfels). Suppose that ωi : Ai → Z for i = 1, . . . , n are generic
lifting functions. Then the mixed volume MV(P1, . . . , Pn) is the sum of the volumes of the
mixed cells in the induced polyhedral decomposition of the Minkowski sum P1 + · · ·+ Pn.

Proof. These constructions—the lifts P̂i, lower faces, and the mixed subdivision—scale mul-
tilinearly with positive t1, . . . , tn ∈ R. For example, a lower face Q = Q1 + · · · + Qn (17)

of P̂1 + · · · + P̂n corresponds to a lower face t1Q1 + · · · + tnQn of t1P̂1 + · · · + tnP̂n. Let
12



π : Rn+1 → Rn be the projection. This shows

vol(t1P1 + · · ·+ tnPn) =
∑
Q

vol(π(t1Q1 + · · ·+ tnQn)) ,

the sum over all lower facets Q. By Condition (18), n = dim(Q1) + · · ·+ dim(Qn), and thus

vol(π(t1Q1 + · · ·+ tnQn)) = t
dim(Q1)
1 · · · tdim(Qn)

n vol(π(Q)) .

Hence the coefficient of t1 · · · tn in vol(t1P1 + · · · + tnPn) is the sum of the volumes of the
mixed cells. �

Example 13. Let us consider this on our running example, using the lifts from Exam-

ple 10. Figure 4 shows two views of the lower hull of the Minkowski sum P̂ + Q̂, along

with the mixed decomposition. Note that P̂ = P as the lifting function is 0 and Q̂ is

ω

x2

x1

α

γ

?

π

P

P̂

Q

Q̂
ω

x1

x2
α

γ
?

π
???

---

���:���:���:

P

P̂

?

Q�
��:

Q̂ -

Figure 4. Two views of the lower hull of lift and mixed subdivision with
mixed cells labeled by corresponding cocharacter.

affinely equivalent to Q. There are two mixed lower facets, whose corresponding mixed
cells are the parallelograms of (13), showing them to be mixed cells of the mixed sub-
division induced by these lifts. The dot product with (α, 2) = (0,−3, 2) is minimized
along the mixed lower facet conv{(0, 2, 0), (2, 2, 0), (3, 4, 3), (1, 4, 3)} with minimal value −6
and the dot product with (γ, 2) = (−3, 0, 2) is minimized along the mixed lower facet
conv{(2, 0, 0), (2, 2, 0), (4, 3, 3), (4, 1, 3)} with minimal value −6. �

Keeping Example 13 in mind, we return to our problem of studying the homotopy given
by generic lifting functions ωi : Ai → Z for i = 1, . . . , n, for the supports of our target

system (14). Let P̂ := P̂1 + · · · + P̂n be the Minkowski sum of the convex hulls P̂i of the

lifted supports Âi. A vector (α, r) ∈ Zn+1 with r > 0 is upward-pointing, and the linear

function 〈(α, r),−〉 it defines achieves its minimum on P̂ along a lower face Q—the lower

face of P̂ exposed by (α, r). When Q has the form (17), then for each i = 1, . . . , n, Qi is the

lower face of P̂i exposed by (α, r), and the minimum value of 〈(α, r),−〉 along Qi is

(19) min{〈(α, r), (a, ω(a))〉 = 〈α, a〉+ rω(a) | a ∈ Ai} = βi ,

which explains the geometric significance of (α, r) and of βi. When Q is a facet, there is a
unique primitive (components have no common factor) upward-pointing integer vector (α, r)

that exposes Q. In this case, A(α)
i = π(Qi ∩ Âi) = C(Qi) is the support of h(α)(y, 0).

13



We explain the algebraic consequences. Suppose that H(α)(y, s) is the system of poly-

nomials h
(α)
i (y, s) defined by (15). Then H(α)(y, 0) is given by the polynomials h

(α)
i (y, 0)

of (16). If, for some i, #C(Qi) = 1, so that dimQi = 0, then h
(α)
i (y, 0) is a monomial and

therefore H(α)(y, 0) has no solutions in (C×)n.
Suppose that H(α)(y, 0) has solutions in (C×)n. Necessarily, dimQi ≥ 1 for all i. By (18),

dimQi = 1 and #C(Qi) = 2 for all i, and thus Q is a mixed facet. Consequently, each

h
(α)
i (y, 0) is a binomial and H(α)(y, 0) is a system of independent binomials, which may be

solved by inspection. Thus the only start subsystems H(α)(y, 0) with solutions are those

for which (α, r) exposes a mixed facet Q of P̂ . The following proposition, whose proof is
sketched in Section 3.5, records the number of solutions to such a mixed system.

Proposition 14. The number of solutions to the system of binomials H(α)(y, 0) is the volume
of the mixed cell π(Q) = conv(C(Q1) + · · ·+ C(Qn)).

3.4. The Polyhedral Homotopy Algorithm. We sketch this algorithm and provide a
brief argument about its correctness.

Algorithm 3.1: The Polyhedral Homotopy Algorithm

1 Input: A system F = (f1, . . . , fn) of n polynomials in n variables, where fi has
support Ai and Newton polytope Pi. The system F is assumed general and
has MV(P1, . . . , Pn) regular solutions.

2 Output: All complex zeros of F .
3 Compute generic lifting functions ωi : Ai → Z (see Definition 11). They define a

notion of mixed cell in the Minkowski sum P = P1 + · · ·+ Pn;
4 for each mixed cell Q of P do
5 Compute the pair (α, r) given as the primitive upward pointing normal of the

mixed facet of P̂ that corresponds to Q.
6 Solve the start subsystem H(α)(y, 0) and then use homotopy continuation to

track those solutions along the homotopy H(α)(y, s) from s = 0 to s = 1, giving
solutions to H(α)(y, 1).

7 end

8 The solutions computed in (2) to H(α)(y, 1) = H(x, 1) = F (x) for all mixed cells are
all the solutions to F (x).

Sketch of Proof of Correctness. The system of equations H(x, t) = 0 defines an algebraic
curve C in (C×)n×C×t whose projection onto C×t has degree equal to MV := MV(P1, . . . , Pn)
with the fiber over t = 1 having MV points. This curve has MV branches near t = 0, each
of which is a point z(t) in C{t}n. Here, C{t} is the field of Puiseaux series, which contains
the algebraic closure of the field C(t) of rational functions in t [78, Sect. 2.5.3]. Elements of
C{t} may be represented by fractional power series of the form∑

m≥N

bmt
m/r ,

where m,N, r ∈ Z with r > 0, and bm ∈ C. Observe that both the exponents of t and the
denominators in those exponents are bounded below.

14



Fix a branch z(t) of C and let r be the least common denominator of all exponents of
coordinates of z(t). Consider the lowest order terms of the coordinates in z(t),

(c1t
α1/r, . . . , cnt

αn/r) ,

where αi ∈ Z and r ∈ N. Set α := (α1, . . . , αn). The substitution t = sr clears the
denominators, converting z(t) to a vector z(sr) of Laurent series in s. The coordinate change
z(sr) ◦ s−α converts these Laurent series to ordinary power series with constant coefficients
c := (c1, . . . , cn). Finally, c is a solution to the start subsystem H(α)(y, 0).

The point is that for each branch z(t) of C near t = 0, there is a weight α and positive
integer r such that the vector c of lowest order coefficients of z(t) is a solution to H(α)(y, 0).
The discussion preceding the statement of the Polyhedral Homotopy Algorithm shows that

(α, r) exposes a mixed lower facet Q of P̂ , and that H(α)(y, 0) has vol(π(Q)) solutions.
Furthermore, each solution c to H(α)(y, 0) may be developed into a power series solution
y(s) to H(α)(y, s). Reversing the coordinate changes and reparameterization, this gives a
solution z(t) to H(x, t) = 0 in (C{t})n and thus a branch of the curve C near t = 0.

Thus the homotopy paths for H(x, t) correspond to the MV distinct branches z(t) of C
near t = 0 and the solutions computed in (3) give all MV solutions solutions to F (x). �

Remark 15. The assumption that F (x) is general in the Polyhedral Homotopy Algorithm
ensures that F (x) has MV regular solutions and that H(x, t)|t∈(0,1] consists of MV smooth
arcs. Thus, to solve a given system F (x) = (f1, . . . , fn) where fi has support Ai, one first
generates a general system G = (g1, . . . , gn) where gi has support Ai. In practice, this is
done by choosing random complex numbers as coefficients, and then with probability one,
G(x) is general and satisfies the hypotheses of the Polyhedral Homotopy Algorithm. The
Polyhedral Homotopy Algorithm is used to solve G(x) = 0, and then a parameter homotopy
with start system G and target system F is used to compute the solutions to F (x) = 0. �

3.5. Solving binomial systems. To complete the discussion, we take a brief look at Step 6
in Algorithm 3.1. By construction, the subsystems H(α)(y, 0) in Step 6 are binomial systems.
We explain how to solve such a system.

Suppose that H(y) is a system of binomials

H(y) =
[
p1y

u(1) − q1yv(1)
. . . pny

u(n) − qnyv(n)
]

where each pi, qi 6= 0 and u(1)−v(1), . . . ,u(n)−v(n) are linearly independent. This is equivalent
to the assertion that the Minkowski sum of the supports of the binomials is a parallelepiped
π(Q) of dimension n. Then for y ∈ (C×)n, H(y) = 0 becomes

(20) yu(i)−v(i)

= qi/pi for i = 1, . . . , n .

Let A be the n × n matrix with rows u(1)−v(1), . . . ,u(n)−v(n). Then detA = vol(π(Q)).
The Smith normal form of A consists of unimodular integer matrices X, Y (integer matrices
with determinant 1) and a diagonal matrix D = diag(d1, . . . , dn) such that XAY = D and
thus detA = detD = d1 · d2 · · · dn. The unimodular matrices X and Y give coordinate
changes on (C×)n which convert the system (20) into a diagonal system of the form

xdii = bi for i = 1, . . . , n .

All d1 · · · dn solutions may be found by inspection, and then the coordinate changes may be
reversed to obtain all solutions to the original system H(y).
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4. Numerical Algebraic Geometry

We have described methods to compute all isolated solutions to a system of polynomial
equations. Numerical algebraic geometry uses this ability to compute zero-dimensional al-
gebraic varieties to represent and manipulate higher-dimensional algebraic varieties on a
computer. This is an essential component of numerical nonlinear algebra. Besides expand-
ing the reach of numerical methods, the geometric ideas behind numerical algebraic geometry
have led to new methods for solving systems of polynomial equations, including regeneration
and monodromy. While the term was coined in [81], the fundamental ideas were developed
in a series of papers including [80, 82], and a more thorough treatment is in [84, Part III].

Example 16. Consider the following square system of polynomials in the variables x, y, z:

(21) F (x, y, z) =

f(x, y, z)g(x, y, z)(x− 4)(x− 6)
f(x, y, z)g(x, y, z)(y − 3)(y − 5)

f(x, y, z)(z − 2)(z − 5)

 ,
where

f(x, y, z) = 1
40

(2xy − x2)− z − 1 and g(x, y, z) = x4 − 4x2 − y − 1 .

Figure 5 shows the real part of the variety V of F (x, y, z) = 0, consisting of a quadric
(degree 2) surface, two quartic (degree 4) curves (at z = 2 and z = 5, respectively), and
eight points. The surface is in blue, the two curves in red, and the eight points in green. �
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Figure 5. A reducible variety, defined implicitly by (21).

Given any system F (x) defining a reducible variety V , implemented symbolic algorithms
(primary decomposition and computing radicals) will decompose the variety V as follows.
These methods will compute a list I1, . . . , Ir, where each Ii is the ideal of an irreducible
component Vi of V . Each ideal Ii is represented by a Gröbner basis, which is a finite set of
generators, and thus serves as a data structure encoding information about Vi. For example,
the dimension and degree of a component Vi may be computed from the data Ii.

In numerical algebraic geometry, the data structure to represent a positive-dimensional
component of a variety is a witness set. Suppose that F (x) is a system of polynomials,
and let V be an irreducible component of the variety defined by F (x) = 0. A witness
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set W for the component V is a triple W = (F,L, L ∩ V ), where L is a general linear
subspace complimentary to V in that codim(L) = dim(V ) and L ∩ V consists of numerical
approximations of the points in the intersection of L and V . Generality (see Section 4.1)
ensures that the linear slice L ∩ V is transverse and consists of deg(V ) points. In practice,
L is represented by dim(V ) randomly chosen polynomials of degree one.

The simple algorithm of membership testing illustrates the utility of this data structure.
Given a witness set W = (F,L, L∩V ) for an irreducible variety V ⊂ Cn and a point x0 ∈ Cn,
we would like to determine if x0 ∈ V . Evaluating F at x0 only implies that x0 lies near the
variety defined by F , not that it lies near the irreducible component V . We instead choose
a general linear subspace L′ with the same codimension as L, but for which x0 ∈ L′ (that is,
L′ is otherwise general, given that x0 ∈ L′). Next, form the linear slice homotopy,

(22) H(x, t) := (F (x), tL(x) + (1− t)L′(x)) ,

and use it to track the points of L ∩ V from t = 1 to t = 0, obtaining the points of L′ ∩ V .
As the intersection of V with the other components of the variety of F has lower dimension
than V , and its complement in V is path-connected, x0 lies in L′ ∩ V if and only if x0 ∈ V .

The core of this membership test reveals another algorithm involving witness sets. Given
a witness set W = (F,L, L∩V ) and a general linear subspace L′ with the same codimension
as L, the step of following the points of L∩ V along the homotopy (22) to obtain the points
L′ ∩ V is called moving a witness set. This is because W ′ = (F,L′, L′ ∩ V ) is a new witness
set for V . This may also be considered to be an algorithm for sampling points of V .

The rest of this section discusses algorithms for computing a witness set and the corre-
sponding numerical irreducible decomposition of a variety V . It concludes with a summary
of regeneration and monodromy, two new methods for solving systems of polynomials.

Remark 17. The set of points in the linear slice L ∩ V is considered a concrete version of
André Weil’s generic points of a variety [95]. We call it witness point set.

A witness point set is related to Chow groups from intersection theory [36]. Indeed, a
witness set for an irreducible variety V may be interpreted as a specific way to represent the
class of V in the Chow ring of Pn. In [86] this point of view was used to extend witness sets
to represent subvarieties of varieties other than Pn.

4.1. More on linear slices. An irreducible algebraic subvariety V of affine or projective
space has two fundamental invariants—its dimension, dim(V ), and its degree, deg(V ). The
dimension of V is the dimension of its (dense subset of) smooth points, as a complex manifold.
Equivalently, this is the dimension of its tangent space at any smooth point.

By Bertini’s theorem [78, Thm. 2, §6.2], there is a dense Zariski-open subset of (affine)
linear spaces L of codimension dim(V ) such that the linear slice L ∩ V is transverse. Here,
a codimension d linear subspace is defined by d independent degree one polynomials. The
degree of V is the maximal number of points in such an intersection. By Bertini again, this
maximum is achieved by linear spaces lying in Zariski open subset of linear subspaces.

In practice, L is represented by dim(V ) random degree one polynomials (their coefficients
are chosen randomly). By the nature of Zariski open sets, for most reasonable probability
distributions on these coefficients, a suitably general L will be found with probability one.

When the variety V defined by the vanishing of F (x) is reducible and the maximum
dimension of an irreducible component is d, then a randomly-chosen linear subspace L of
codimension d will meet each irreducible component V ′ of V of dimension d in deg(V ′) points
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L ∩ V ′, and it will not intersect any components of V of dimension less than d. If V ′ is the
unique component of dimension d, then (F,L, L ∩ V ′) is a witness set for V ′.

Example 18. We continue Example 16. To compute the linear slice L ∩ V with the line L
parameterized by (t,−t − 2,−3 + t/4), we add to F two degree one polynomials x + y + 2
and z+ 3− x/4. The augmented system defines the intersection L∩ V . It has two solutions
(10/3,−16/3,−13/6) and (−8, 6,−5). The line L is sufficiently general so that it only meets
the two-dimensional surface defined by f(x, y, z), and neither of the curves nor any isolated
points. Figure 6 shows this configuration. �
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Figure 6. Slice of V by a line L.

While finding a witness point set for the top-dimensional component of V in Example 18
was straightforward, finding witness point sets for the other components is not as simple. To
find points on curves, we intersect V with the vertical plane P defined by x+y−2 = 0, finding
eight isolated solutions. These come from the two curves of degree four, each contributing
four points. This number eight does not yet tell us that there are two curves, there may be
a single curve of degree eight or some other configuration. Furthermore, the plane intersects
the surface in a curve C, and we may have found additional non-isolated points on C. This
is displayed in Figure 7. Methods to remove points on higher-dimensional components and
to determine which points lie on which components of the same dimension are described in
the next subsection.

4.2. Numerical irreducible decomposition. A system F (x) of polynomials in n variables
defines the algebraic variety V := {x ∈ Cn | F (x) = 0}. Were V irreducible, a witness set
would be an acceptable representation for V . An analog when V is reducible is a numerical
irreducible decomposition of V . This data structure for representing V consists of a collection
of witness sets (F,L′, L′ ∩ V ′), one for each irreducible component V ′ of V . We present a
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Figure 7. The plane P intersects V in eight isolated points and a curve C.

numerical irreducible decomposition for our running example:(
F, [x+y+2, z+3−x

4
], {(10

3
,−16

3
,−13

6
), (−8, 6,−5)}

)
(F, [x+y+2], {(−2.06, 0.06, 2), (−0.40,−1.60, 2), (0.69,−2.69, 2), (1.76,−3.76, 2)}) ,
(F, [x+y+2], {(−2.06, 0.06, 5), (−0.40,−1.60, 5), (0.69,−2.69, 5), (1.76,−3.76, 5)}) ,

(F, [], {(4, 3, 2)}) , (F, [], {(4, 3, 5)}) , (F, [], {(4, 5, 2)}) , (F, [], {(4, 5, 5)}) ,
(F, [], {(6, 3, 2)}) , (F, [], {(6, 3, 5)}) , (F, [], {(6, 5, 2)}) , (F, [], {(6, 5, 5)}) .

We later present the Cascade Algorithm 4.2 to compute a numerical irreducible decomposi-
tion. We first explain its constituents.

4.2.1. Witness point supersets. A starting point is to compute, for each i, a set of points Ui
in a linear slice L∩V of V with a codimension i linear space L, where Ui contains all witness
point sets L ∩ V ′ for V ′ an irreducible component of dimension i. For this, let `1, . . . , `n−1
be randomly chosen (and hence independent) degree one polynomials. For each i, let Li be
defined by `1, . . . , `i, and let Fi be a subsystem of F consisting of n − i randomly chosen
linear combinations of elements of F . Then (Fi, `1, . . . , `i) is a square subsystem of (F,Li),
and we may use it to compute points Ui that lie in Li ∩ V , as explained in Section 2.5.

By the generality of `1, . . . , `n−1, there will be no solutions to (Fi, `1, . . . , `i) when i exceeds
the dimension d of V . (This is another application of Bertini’s theorem.) By the same
generality, the set Ui contains witness point sets for each irreducible component of V of
dimension i, and perhaps some points on irreducible components of V of larger dimension.
The next two sections describe how to remove points of Ui that lie on components of V
of dimension exceeding i, and then how to decompose such an equidimensional slice into
witness point sets for the irreducible components of V of dimension i.

4.2.2. Removing points on higher-dimensional components. Suppose that we have computed
U0, U1, . . . , Ud, where d is the dimension of V as in Section 4.2.1. By the generality of
`1, . . . , `d, Ud is equal to the linear slice Ld∩V , and thus is the union of witness point sets for
the irreducible components of V of dimension d. For each i = 0, . . . , d, let Vi be the union of
all irreducible components of V of dimension i. Then Wi := Li ∩ Vi ⊂ Ui consists of points
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in Ui lying on some component of V of dimension i. This union of the witness point sets of
i-dimensional components of V is an equidimensional slice. Also, note that Wd = Ud.

Since points of Ui rWi lie on Vi+1, . . . , Vd, downward induction on i and the membership
test computes Ui rWi and thus Wi. This uses the observation that the membership test,
starting with Wj = Lj ∩ Vj, may be used to determine if a point x0 ∈ Ui lies on Vj, for any
j > i. This is invoked in Step 7 in Algorithm 4.1 for computing such equidimensional slices.

Algorithm 4.1: Computing equidimensional slices

1 Input: F (x), `1, . . . , `d, U1, . . . , Ud as above.
2 Output: Equidimensional slices W0, . . . ,Wd of V .
3 Set Wd := Ud.
4 for i from d− 1 down to 0 do
5 Set Wi := {}.
6 for each point x0 ∈ Ui do
7 If x0 6∈ Vi+1 ∪ · · · ∪ Vd, then Wi := Wi ∪ {x0}.
8 end
9 end

10 Return Wd, . . . ,W1,W0.

Remark 19. An alternative to Algorithm 4.1 is a local dimension test [4], which can deter-
mine if a point x0 ∈ Ui lies on a component of dimension exceeding i.

4.2.3. Decomposing equidimensional slices. Suppose that we have the equidimensional slices
W0, . . . ,Wd of V , where Wi = Li ∩ Vi for each i, as computed in Algorithm 4.1. Fix i and
suppose that the irreducible decomposition of Vi is

Vi = X1 ∪X2 ∪ · · · ∪Xr ,

so that X1, . . . , Xr are all of the irreducible components of V of dimension i. Then

(23) Wi = Li ∩ Vi =
(
Li ∩X1

)
t
(
Li ∩X2

)
t · · · t

(
Li ∩Xr

)
.

This union is disjoint by the generality of `1, . . . , `d, as the intersection of Xj∩Xk with j 6= k
has dimension less than i. Call (23) the witness set partition of equidimensional slice Wi.
Each part Li ∩Xj is a witness point set for Xj. Computing a witness set partition of Wi is
tantamount to computing a numerical irreducible decomposition of Vi.

Suppose that H(x, t) := (F (x), tLi(x) + (1−t)L′(x)) is a linear slice homotopy (22). As
with moving a witness set, if we track a point x ∈ Li ∩Xj to a point x′ ∈ L′ ∩ V , then all
points of the homotopy path, including its endpoint x′, lie on Xj.

Suppose that we combine linear slice homotopies together, moving points of Wi = Li ∩ Vi
to L′ ∩ Vi on to L′′ ∩ Vi, and then back to Li ∩ Vi. The three convex combinations,

tLi(x) + (1− t)L′(x) , tL′(x) + (1− t)L′′(x) , and tL′′(x) + (1− t)Li(x) ,

for t ∈ [0, 1] together form a based loop in the space of codimension i affine linear subspaces.
Tracking each x0 ∈ Wi along the three homotopies gives another point σ(x0) ∈ Wi. This
computes a monodromy permutation σ of Wi. This has the property that the partition of Wi

into the cycles of σ refines the witness set partition (23).
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Following additional based loops may lead to other partitions of Wi into cycles of mon-
odromy permutations. The common coarsening of these monodromy cycle partitions is an
empirical partition of Wi. Every empirical partition is a refinement of the witness set parti-
tion. Since the smooth locus of Xj r (

⋃
k 6=j Xk) is path-connected, the common coarsening

of all empirical partitions is the witness set partition. Thus computing monodromy permu-
tations will eventually give the witness set partition.

The problem with this approach to numerical irreducible decomposition is that only
when Vi is irreducible is there a stopping criterion. Namely, if we discover an empirical
partition consisting of a single part, then we conclude that Vi is irreducible, and (F,Li,Wi)
is a numerical irreducible decomposition of Vi. All other cases lack a stopping criterion.

A common heuristic stopping criterion is the trace test [82]. To begin, form a linear slice
homotopy (22) using a linear subspace L′ such that Li ∩ L′ has codimension i+1. Then the
convex combination tLi(x) + (1 − t)L′(x) forms a pencil. The trace test follows from the
observation that while each homotopy path x(t) for t ∈ [0, 1] tracked from a point x ∈ Wi is
nonlinear, if we sum over all points x ∈ Li ∩Xj in a single part of the witness set partition,
then that sum or its average is an affine-linear function of the homotopy parameter t. Given
a subset S ⊂ Wi, the average of the points tracked from S is the trace of S. The trace is an
affine-linear function if and only if S is the full witness point set [84, Theorem 15.5.1].

Example 20. Consider the folium of Descartes which is defined by f = x3 + y3 − 3xy. A
general line ` meets the folium in three points W with the triple (f, `,W ) forming a witness
set for the folium. Figure 8 shows these witness sets on four parallel lines, which lie in a
pencil. Note that the four traces are collinear. �

x3 + y3 − 3xy

`

collinear traces�

Figure 8. The trace test for the folium of Descartes.

The collinearity of traces may be seen as a consequence of Vièta’s formula that the sum
of the roots of a monic polynomial of degree δ in y is the coefficient of −yδ [61].

This gives the following stopping criterion for computing a numerical irreducible decom-
position. Given a part S of an empirical partition of Wi, track all points of S along a linear
slice homotopy given by a pencil containing Li. If the traces are collinear, then S is a witness
point set for some component of Vi. Otherwise, either compute more monodromy permuta-
tions to coarsen the empirical partition or check the collinearity of the trace for the union of
S with other parts of the empirical partition. This is called the trace test.

Example 21. Suppose that V is the union of the ellipse 8(x + 1)2 + 3(2y + x + 1)2 = 8
and the folium, as in Figure 9. A witness set for V consists of the five points W = V ∩ `.
Tracking points of W as ` varies over several loops in the space of lines gives an empirical
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`

Figure 9. Numerical irreducible decomposition for the ellipse and folium.

partition of W into two sets, of cardinalities two and three, respectively. Applying the trace
test to each subset verifies that each is a witness set of a component of V . �

The methods described in this and the previous subsections combine to give the Cascade
Algorithm for computing a numerical irreducible decomposition. This was introduced in [80]
and is implemented in PHCpack [94], Bertini [5] and HomotopyContinuation.jl [14], and
in NAG4M2 [60] through its interfaces. We present a simplified form in Algorithm 4.2.

Algorithm 4.2: The Cascade Algorithm

1 Input: A system F (x) of polynomials in n variables defining a variety V of
dimension d.

2 Output: A numerical irreducible decomposition of V .
3 for each dimension i from d down to 0 do
4 Choose a codimension i linear space Li and compute Li ∩ V , yielding points Ui.
5 Remove from Ui any points lying on higher-dimensional components as in

Algorithm 4.1. Call the remaining points Wi.
6 Compute the witness set partition Wi = S1 t · · · t Sr using monodromy and the

trace test as explained in Section 4.2.3.
7 Return (F,Li, Sj) for j = 1, . . . , r. These are witness sets for the irreducible

components of V of dimension i.
8 end

4.3. Advanced methods for solving. The perspective afforded by numerical algebraic
geometry and its tools—witness sets and monodromy—lead to new algorithms for solving
systems of equations. We describe two such algorithms. Regeneration [45] is a bootstrap
method that constructs a numerical irreducible decomposition one equation at a time. Mon-
odromy solving [28] exploits that it is often easier to find a system of equations for which a
given point is a solution than to find a solution to a given system.

4.3.1. Regeneration. Let F := (f1, . . . , fm) be a system of polynomials in n variables. Rather
than solve all equations at once as in (3), we instead consider the sequence of varieties

Cn = V0 ⊃ V1 ⊃ V2 ⊃ · · · ⊃ Vm = V ,

where Vi is defined by the first i polynomials in F . The approach of equation-by-equation
solvers [45, 46, 83] is to iteratively compute Vi given Vi−1 for each i = 1, . . . ,m.
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Let X ⊂ Vi−1 be an irreducible component of dimension d. Then

X ∩ Vi = {x ∈ X | fi(x) = 0} .
If fi vanishes identically on X, then X is an irreducible component of Vi. Otherwise X ∩ Vi,
if nonempty, is a union of irreducible components of Vi of dimension d−1. We explain how
to obtain a numerical irreducible decomposition of X ∩ Vi given a witness set for X.

Let ((f1, . . . , fi−1), L
d, Ld ∩ X) be a witness set for X. By the generality of Ld, with

probability one we may conclude that a general polynomial f vanishes on X only if f
vanishes at each point of W := Ld ∩X. Regeneration is a method to use W to compute a
witness point superset for X ∩ Vi. Let `1, . . . , `d be d linear polynomials defining Ld, and
suppose that δ is the degree of fi. Form the convex combination `(t) := t`d + (1− t)`′ of `d
with a new general degree one polynomial, `′. Use the straight-line homotopy

(f1, . . . , fi−1 , `(t) , `1, . . . , `d−1)

to move the witness point set W1 = W = Ld ∩X at t = 1 to witness point sets W2, . . . ,Wδ

at distinct points t = t2, . . . , tδ, respectively.
Then the product f := `d · `(t2) · · · `(tδ) has degree δ in x and we have

U ′ = W1 ∪W2 ∪ · · · ∪Wδ = Ld−1 ∩ (X ∩ {x | f(x) = 0}) ,
where Ld−1 is defined by `1, . . . , `d−1. Use the straight-line homotopy

(f1, . . . , fi−1 , tf + (1− t)fi , `1, . . . , `d−1)
to track the points of U ′ at t = 1 to the set U at t = 0. Then

U = Ld−1 ∩
(
X ∩ Vi

)
is a witness point superset for X ∩ Vi. Finally, use monodromy and the trace test of Sec-
tion 4.2.3 to decompose U into witness point sets for the irreducible components of X ∩ Vi.

As regeneration computes a numerical irreducible decomposition of the variety V of F , it
will also compute all isolated solutions to F .

4.3.2. Solving by monodromy. Suppose that we wish to solve a system F = F (x; p) of
polynomials that lies in a parameter space of polynomial systems as in Section 2.2, and that
evaluation at a general point x0 ∈ Cn gives n independent linear equations in the parameters
p ∈ Ck. For example, F (x; p) could be the family of all polynomial systems f1(x), . . . , fd(x)
where the degree of fi is di and p ∈ Ck is the vector of coefficients. More generally, each
fi(x) could be a sparse polynomial of support Ai.

Consider the incidence variety (5) with projections π1 to Cn and π2 to Ck.

(24)

Z = {(x,p) ∈ Cn × Ck | F (x; p) = 0} ⊆ Cn × Ck

�
�
���

π1

Cn

C
C
CCW

π2

Ck

For any parameters p ∈ Ck, π−12 (p) is the set of solutions x ∈ Cn to F (x; p) = 0. On the
other hand, if we fix a general x0 ∈ Cn, then π−11 (x0) ⊂ Ck is defined by n independent linear
equations on Ck, and is thus a linear subspace of dimension k−n. (This implies that Z is
irreducible and has dimension k, which explains why the general fiber π−12 (p) is finite and
π2 : Z → Ck is a branched cover.) Imposing k−n additional general degree one equations on
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π−11 (x0) gives a single parameter value p0 ∈ Ck such that F (x0; p0) = 0, that is, a system of
polynomials F (x; p0) in the family Z for which x0 is a solution.

The underlying idea of monodromy solving [28] is to use monodromy to discover all solu-
tions to F (x; p0) = 0 and then use a parameter homotopy to find solutions to any desired sys-
tem of polynomials in the family. Similar to the description of monodromy in Section 4.2.3,
if we choose general points p1,p2 ∈ Ck, we may form the trio of parameter homotopies
F (x; tp0 + (1− t)p1), F (x; tp1 + (1− t)p2), and F (x; tp2 + (1− t)p0). For t ∈ [0, 1], these
form a loop in the parameter space based at p0, and we may track the point x0 along this
loop to obtain a possibly new point x′ ∈ π−12 (p0) so that F (x′; p0) = 0.

More generally, given a subset S ⊂ π−12 (p0) of computed points, we may track it along a
possibly new loop in Ck based at p0 to obtain a subset S ′ ⊂ π−12 (p0). Thus we may discover
additional solutions to F (x; p0) = 0.

When the number N of solutions to a general system in the family is known (e.g., via
Bernstein’s bound for the sparse systems of Section 3.1), this method has a stopping cri-
terion. Otherwise, some heuristic may be used once sufficiently many solutions are known.
The technique of solving using monodromy was introduced in [28], where a more complete
description may be found. It is implemented in HomotopyContinuation.jl [14] and widely
used, in particular when it is not necessary to compute all solutions to a given system.

Suppose that we have a branched cover π : Z → Y with Y rational (e.g. as in (24) where
Y = Ck), and we know all solutions π−1(y0) for a parameter value y0 not in the branch
locus, B. As in Section 4.2.3, tracking all points in π−1(y) as y varies along a loop in Y rB
based at y0 gives a monodromy permutation σ of π−1(y0), which we regard as an element
of the symmetric group SN , where N = |π−1(y0)|. The set of all monodromy permutations
forms the monodromy group of the branched cover Z.

This is in fact a Galois group [41, 52, 87]: Let K = C(Y ) be the field of rational functions
on the parameter space Y and let L = C(Z) be the function field of the incidence variety Z.
As π is dominant, we may regard K as a subfield of L via π−1, and L/K is a field extension
of degree N . The Galois group of the normal closure of L/K is equal to the monodromy
group of Z, and we call it the Galois group of the branched cover Z, G(Z).

There are several approaches to computing Galois groups using methods from numerical
nonlinear algebra. In [62], monodromy permutations were computed and used to show some
Galois groups were the full symmetric group (see Section 6.2). Other approaches, including
methods guaranteed to compute generators of Galois groups, were developed in [43]. Yahl [97]
introduced a method to certify that a Galois group contains a simple transposition, using
ideas from this section and from Section 5.

A Galois group that is imprimitive (preserves a partition of the solitions) is equivalent
to the branched cover decomposing as a comosition of branched covers, and this may be
exploited for solving (comuting points in a fiber). This is explained in [2, 15].

5. Certification

Let F be a square system of polynomials and z0 be a point presumed to be an approx-
imation of a solution to F . We discuss methods that can give a computational proof that
Newton iterates starting from z0 converge to a nearby regular zero z of F . Such methods
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certify the numerical solution z0 to F . Certification methods can also prove that two numer-
ical solutions correspond to two distinct zeroes, and are thus a useful tool in both theoretical
and applied problems in numerical nonlinear algebra.

There are two main strategies to certify solutions to square polynomial systems, Smale’s α-
theory and Krawczyk’s method. A difference is that Smale’s α-theory uses exact arithmetic,
while Krawczyk’s method uses floating-point arithmetic.

Remark 22. There are other approaches. In [27] the authors develop methods to certify
overdetermined systems which require global information. In [44], overdetermined systems
are reformulated as square systems to enable certification. �

5.1. Smale’s α-theory. Smale’s α-theory certifies approximate zeroes of a square system F .
An approximate zero of F is a data structure representing a solution to F . Mentioned in
Section 2.4, we now give a more formal definition.

Definition 23. Let F (x) be a square system of n polynomials in n variables. Writing JF :=
∂F
∂x

for its Jacobian matrix, its Newton operator NF (9) is NF (x) := x− (JF (x))−1 F (x). A
point z0 ∈ Cn is an approximate zero of F if there exists a regular zero z ∈ Cn of F such that
the sequence {zk | k ≥ 0} of Newton iterates defined by zk+1 = NF (zk) for k ≥ 0 converges
quadratically to z in that

‖zk+1 − z‖ ≤ 1

2
‖zk − z‖2 ∀k ≥ 0 .

We call z the associated zero of z0. �

Smale’s α-theory certifies that a point x is an approximate zero using only local information
encoded in two functions of F and x,

β(F,x) := ‖JF (x)−1F (x)‖ and γ(F,x) := max
k≥2

∥∥ 1

k!
JF (x)−1DkF (x)

∥∥ 1
k−1 .

Here, β is the size of a Newton step, DkF (x) is the tensor of derivatives of order k at x,
and JF (x)−1DkF (x) is the corresponding multilinear map (Cn)k → Cn. The norm is the
operator norm ‖A‖ := max‖v‖=1 ‖A(v, . . . , v)‖.

Let α(F,x) := β(F,x) ·γ(F,x) be the product of these two functions. We state two results
of Smale [10, Theorem 4 and Remark 6 in Chapter 8].

Theorem 24. Let x ∈ Cn and F be a system of n polynomials in n variables.

(1) If α(F,x) < 13−3
√
17

4
≈ 0.15767, then x is an approximate zero of F whose associated

zero z satisfies ‖x− z‖ ≤ 2β(F,x).
(2) If x is an approximate zero of F and y ∈ Cn satisfies ‖x − y‖ < 1

20 γ(F,x)
, then y is

also an approximate zero of F with the same associated zero as x.

Shub and Smale [79] derived an upper bound for γ(F,x) which can be computed using
exact arithmetic, and thus one may decide algorithmically if x is an approximate zero of F ,
using only data of F and the point x itself.

The software alphaCertified [47] uses this theorem in an algorithm. An implementation
is publicly available for download1. If the polynomial system F has only real coefficients,
then alphaCertified can decide if an associated zero is real. The idea is as follows. Let

1https://www.math.tamu.edu/~sottile/research/stories/alphaCertified/index.html

25

https://www.math.tamu.edu/~sottile/research/stories/alphaCertified/index.html


x ∈ Cn be an approximate zero of F with associated zero z. Since the Newton operator has
real coefficients, NF (x) = NF (x), we see that x is an approximate zero of F with associated
zero z. Consequently, if ‖x− x‖ < 1

20 γ(F,x)
, then z = z by Theorem 24(2).

5.2. Krawczyk’s method. Interval arithmetic certifies computations using floating-point
arithmetic. Krawczyk’s method [56] adapts Newton’s method to interval arithmetic and can
certify zeros of analytic function Cn → Cn. This is explained in [74].

Real interval arithmetic involves the set of compact real intervals,

IR := {[x, y] | x, y ∈ R, x ≤ y} .
For X, Y ∈ IR and ◦ ∈ {+,−, ·,÷}, we define X ◦ Y := {x ◦ y |x ∈ X, y ∈ Y }. (For ÷ we
require that 0 6∈ Y .) For intervals I, J,K ∈ IR we have I · (J + K) ⊆ I · J + I ·K, but the
inclusion may be strict. Indeed,

[0, 1] · ([−1, 0] + [1, 1]) = [0, 1] · [0, 1] = [0, 1] but

[0, 1] · [−1, 0] + [0, 1] · [1, 1] = [−1, 0] + [0, 1] = [−1, 1] .

Thus there is no distributive law in interval arithmetic.
Complex intervals are rectangles in the complex plane of the form

X +
√
−1Y = {x+

√
−1y | x ∈ X, y ∈ Y } , where X, Y ∈ IR .

Let IC be the set of all complex intervals. Writing X
Y

for X ÷ Y , we define arithmetic for

complex intervals I = X +
√
−1 Y and J = W +

√
−1Z as follows.

I + J := (X +W ) +
√
−1 (Y + Z) I · J := (X ·W − Y · Z) +

√
−1 (X · Z + Y ·W )

I − J := (X −W ) +
√
−1 (Y − Z)

I

J
:=

X ·W + Y · Z
W ·W + Z · Z

+
√
−1

Y ·W −X · Z
W ·W + Z · Z

As before, for I
J

we assume that 0 6∈ (W ·W + Z · Z).
As with real intervals, there is no distributive law for complex intervals. Consequently,

evaluating a polynomial at intervals is not well-defined. Evaluation at intervals is well-
defined for expressions of a polynomial as a straight-line program, which is an evaluation of
the polynomial via a sequence of arithmetic operations that does not involve distributivity.

Example 25. Consider the polynomial f(x, y, z) = x(y+z) = xy+xz. These two expressions
of the distributive law are different straight-line programs for f , and we have shown that
they have distinct evaluations on the triple ([0, 1], [−1, 0], [1, 1]). �

We sidestep this issue with the notion of an interval enclosure.

Definition 26. Let F be a system of n polynomials in n variables. We call a map

�F : (IC)n → (IC)n

such that {F (x) | x ∈ I} ⊆ �F (I) for every I ∈ (IC)n an interval enclosure of F . �

Let �F be an interval enclosure of a square polynomial system F and �JF be an interval
enclosure of its Jacobian map JF : Cn → Cn×n. Furthermore, let I ∈ (IC)n, x ∈ Cn, and let
Y ∈ Cn×n be an invertible matrix. The Krawczyk operator these define is

Kx,Y (I) := x− Y ·�F (x) + (1n − Y ·�JF (I))(I− x) .
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The norm of a matrix interval A ∈ (IC)n×n is ‖A‖∞ := max
B∈A

max
v∈Cn
‖Bv‖∞/‖v‖∞, where

‖(v1, . . . , vn)‖∞ = max1≤i≤n |vi| for v ∈ Cn.
We state the main theorem underlying Krawczyk’s method, which is proven in [74].

Theorem 27. Let F = (f1, . . . , fn) be a system of n polynomials in n variables, I ∈ (IC)n,
x ∈ I, and let Y ∈ Cn×n be invertible.

(1) If Kx,Y (I) ⊂ I, there is a zero of F in I.

(2) If
√

2 ‖1n − Y ·�JF (I)‖∞ < 1, then F has a unique zero in I.

Several choices have to be made to implement Krawczyk’s method. For instance, we have
to choose interval enclosures of both F and its Jacobian JF . Example 25 shows that this
is nontrivial as different straight-line programs for the same polynomial system can produce
different results in interval arithmetic. Furthermore, choosing I in Theorem 27 too small
might cause the true zero not to lie in I, while choosing I too large can be an obstacle for
the contraction property in (1). Heuristics are usually implemented to address these issues.

Krawczyk’s method is implemented in the commercial MATLAB package INTLAB [75], the
Macaulay2 package NumericalCertification [58], and in HomotopyContinuation.jl [11,
14]. Krawczyk’s method can also certify the reality of a zero: Assume that F has real
coefficients. Suppose that we have found an interval I ∈ (IC)n and a matrix Y ∈ Cn×n such
that Kx,Y (I) ⊂ I and

√
2 ‖1n − Y ·�JF (I)‖∞ < 1. By Theorem 27, F has a unique zero z

in I. Since z is also a zero of F , if {y | y ∈ Kx,Y (I)} ⊂ I, then z = z.

6. Applications

While we have largely discussed the theory and many aspects, methods, and some im-
plementations of numerical nonlinear algebra, these were all motivated by its applications
to questions within and from outside of mathematics. Many of these are well-known and
may be found in other contributions in this volume. We present three such here, involving
synchronization of oscillators, enumerative geometry, and computer vision.

6.1. The Kuramoto model. In his 1673 treatise on pendulums and horology [51], Christi-
aan Huygens observed an “odd kind of sympathy” between pendulum clocks, which was one
of the earliest observations of synchronization among coupled oscillators. Other examples
range from pacemaker cells in the heart to the formation of circadian rhythm in the brain
to synchronized flashing of fireflies. The Kuramoto model emerged from this study and has
many interesting applications that have fueled several decades of active research [1].

A network of oscillators can be modeled as a swarm of points circling the origin which pull
on each other. For weakly coupled and nearly identical oscillators, the natural separation of
timescales [57, 96] allows a simple description of the long-term behavior in terms of phases
of the oscillators. Kuramoto singled out the simplest case governed by equations

(25) θ̇i = ωi −
∑
j∼i

kij sin(θi − θj) for i = 0, . . . , n .

Here, θ0, . . . , θn ∈ [0, 2π) are the phases of the oscillators, ωi are their natural frequencies,
kij = kij are coupling coefficients, and j ∼ i is adjacency in the graph G underlying the
network. This is the Kuramoto model [57]. It is simple enough to be analyzed yet it exhibits
interesting emergent behaviors, and has initiated an active research field [89].
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One core problem that can be studied algebraically is frequency synchronization. This
occurs when the tendency of oscillators to relax to their limit cycles and the influences of
their neighbors reach equilibrium, and the oscillators are all tuned to their mean frequency.
Such synchronized configurations correspond to equilibria of (25), which are solutions to
a nonlinear system of equations. Even though this system is derived from a simplification
of the oscillator model, its utility extends far beyond this narrow setting. For example, in
electric engineering, it coincides with a special case of the power flow equations, derived from
laws of alternating current circuits [30].

The equilibrium equations become algebraic after a change of variables. Numerical non-
linear algebra has been used to solve these and related families of equations finding syn-
chronization configurations that cannot be found by simulations or symbolic computation.
For example, the IEEE 14 bus system from electric engineering is a well-studied test case,
yet its full set of solutions remained unknown until it was computed using total degree and
polyhedral homotopy methods by Mehta, et al. [64], using Bertini [5] and HOM4PS-2.0 [59].

For rank one coupling, Coss, et al. [21] showed that the equilibrium equation of (25) may
be reformulated as a set of decoupled univariate radical equations, which are easy to solve.

Determining the number of complex equilibira (solutions to the equilibrium equations (25))
is another line of research that has used numerical nonlinear algebra. In the 1980s, Baillieul
and Byrnes [3] showed that a complete network of three oscillators has at most six complex
equilibria, and all may be real. For a complete network of four oscillators, they constructed
14 real equilibria. There are 20 complex equilibria. In the 2010s, Molzahn, et al. [66] showed
there could be 16 real equilibria and in 2020, Lindberg et al. [63] improved this to 18. It
remains unknown if all 20 complex equilibria can be real.

We have a more complete answer for the enumeration of complex equilibria. Using the
bihomogeneous Bézout bound of an algebraic formulation of the equilibrium equations of
(25), Baillieul and Byrnes showed that a network of n+1 oscillators has at most

(
2n
n

)
complex

equilibria. This upper bound is attained for generic parameters {ωi} and {kij} whose network
is a complete graph.

For sparse networks whose underlying graph is not complete, the bihomogeneous Bézout
bound is not sharp, as the equations are sparse in the sense of Section 3. Bernstein’s
Theorem 8 is used in [64] to give a bound that depends upon the underlying graph. This is
elegantly expressed in terms of the normalized volumes of symmetric edge polytopes. To a
G connected graph we associated its symmetric edge polytope, which is defined by

(26) ∆G := conv{ei − ej | i ∼ j in G} .
For a network of n+1 oscillators this has dimension n. Figure 10 shows symmetric edge
polytopes for connected graphs on three vertices. A result in [19] is that for a connected

K3

1

2

3

T3

1

2

3

∆K3 ∆T3

e1−e2

e1−e3
e2−e3

Figure 10. Connected graphs on three vertices, their symmetric edge poly-
topes, and the coordinates.

graph G and generic parameters, there are exactly n!vol(∆G) complex equilibria. We may
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see the bound of six from [3] for the network K3 in Figure 10; the hexagon ∆K3 is composed
of six primitive triangles.

This symmetric edge polytope ∆G is quite natural and has been independently studied
in geometry and number theory [22]. Table 1 shows examples of the numbers of complex
equilibria obtained through this connection. Finding exact formula for other families of

Table 1. Known results for the generic and maximum complex equilibria of
(25)

A tree network with n+ 1 nodes [18] 2n

A cycle network with n+ 1 nodes [18] (n+ 1)
(

n
bn/2c

)
Cycles of lengths 2m1, . . . , 2mk joined along an edge [22] 1

2k−1

∏k
i=1mi

(
2mi
mi

)
Cycles of lengths 2m1+1 and 2m2+1 joined along an edge [22] (m1+m2+2m1m2)

(
2m1

m1

)(
2m2

m2

)
A wheel graph with n+ 1 nodes for odd n [22] (1−

√
3)n + (1 +

√
3)n

A wheel graph with n+ 1 nodes for even n [22] (1−
√

3)n + (1 +
√

3)n − 2

networks remains an active topic. For trees and cycle networks, is is possible for all complex
equilibria to be real. It is still unknown if the same holds for other families of networks.

6.2. Numerical nonlinear algebra in enumerative geometry. Paraphrasing Schubert
[76], enumerative geometry is the art of counting geometric figures satisfying conditions
imposed by other, fixed, geometric figures. Traditionally, these counting problems are solved
by understanding the structure of the space of figures we are to count well enough to construct
their cohomology or Chow rings [36], where the computations are carried out. Numerical
nonlinear algebra allows us to actually compute the solutions to a given instance of an
enumerative problem and then glean information about the problem that is not attainable
by other means.

While the polyhedral homotopy of Section 3 based on Bernstein’s Theorem may be viewed
as a numerical homotopy method to solve a class of enumerative problems, perhaps the first
systematic foray in this direction was in [49] by Sturmfels and coauthors, who exploited
structures in the Grassmannian to give three homotopy methods for solving simple Schubert
problems. These are enumerative problems that ask for the k-planes in Cn that meet a
collection of linear subspaces non-trivially, such as finding all (462) 3-planes in C7 that
meet twelve 4-planes [77]. Their number may be computed using Pieri’s formula. The Pieri
homotopy algorithm from [49] was later used [62] to study Galois groups in Schubert calculus.
This included showing that a particular Schubert problem with 17589 solutions had Galois
group the full symmetric group S17589.

One of the most famous and historically important enumerative problems is the problem
of five conics: How many plane conics are simultaneously tangent to five given plane conics?
This was posed by Steiner [88] who gave the answer 7776. Briefly, a conic ax2 + bxy+ cy2 +
dxz + eyz + fz2 = 0 in P2 is given by the point [a, b, c, d, e, f ] in P5, and the condition to
be tangent to a given conic is a sextic in a, b, . . . , f . By Bézout’s Theorem, Steiner expected
65 = 7776. The only problem with this approach is that every “doubled-line conic”, one
of the form (αx + βy + γz)2, is tangent to every conic, and thus the Bézout count of 7776
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includes a contribution from the doubled-line conics. Chasles [17] essentially introduced the
Chow ring of smooth conics to give the correct answer of 3264 [54].

Fulton [37, p. 55] asked how many of the 3264 conics could be real, later determining
that all can be real, but he did not publish his argument. His argument involves deforming
an asymmetric pentagonal arrangement of lines and points to prove the existence of five
real conics having all 3264 tangent conics real. Ronga, Tognoli, and Vust [73] published a
different proof of existence via a delicate local computation near a symmetric arrangement
that had 102 tangent conics, each of multiplicity 32. Fulton’s argument is sketched in [85,
Ch. 9] and Sturmfels with coauthors wrote a delightful article “3264 conics in a second” [12]
in which they give an explicit five real conics with 3264 real tangent conics, together with a
proof using certification as in Section 5 using numerical nonlinear algebra. Figure 11 shows
a picture.

Figure 11. 3264 real conics tangent to five (nearly degenerate) conics.

6.3. Computer vision. Computer vision is a field of artificial intelligence that trains com-
puters to interpret and understand the visual world. Several types of problems in computer
vision are amenable to algebraic computational methods. We shall focus on one type—
minimal problems—and one method—homotopy continuation. Minimal problems are the
backbone of the structure from motion pipeline that is used for three-dimensional (3D)
reconstruction in applications from medical imaging to autonomous vehicles.

The chapter “Snapshot of Algebraic Vision” in this volume treats other types of problems
and other algebraic methods, including symbolic computation.

All problems amenable to this algebraic analysis share a purely geometric problem at their
core. For computer vision, this often begins with basic projective geometry. We consider
the projective space P3 as the 3D world, as it compactifies the Euclidean space R3. A
mathematical model of a pin-hole camera C is a projective linear map given by a matrix

C := [R | t] , R ∈ R3×3 and t ∈ R3×1 ,
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which captures the images of world points in the image plane P2. A calibrated camera C
has R ∈ SO(3). While this is formulated in the P3 compactifying R3, for computations we
extend scalars to the complex numbers.

We may also interpret a calabrated camera as an element of the special Euclidean group
SE(3) acting on R3, the rotation R followed by the translation t. It is convenient to operate
in a fixed affine chart on P3 and consider the (affine) camera plane as a plane of points with
the third coordinate equal to 1 in R3 (the local affine coordinates of the camera). The image
of a point is obtained intersecting the image plane with the line going through the point and
the center of the camera. Figure 12 illustrates this as well as the definition of depth. The

λxλy
λ



xy
1



Figure 12. 5pt problem: given images of five points in two views, find the
relative pose [R | t] of the two cameras with t = (t1, t2, 1)T .

relative positions of the two cameras is encoded by an element [R | t] of the Euclidean special
group SE(3). The third coordinate of t is set equal to 1 to remove a scaling ambiguity. In
the (3D) coordinate frame of the first camera the image of the tip of the little finger lies in
the camera plane and the actual tip is the point obtained by scaling this by the depth λ.

6.3.1. Minimal problems. A reconstruction problem is minimal if it has a finite number
of (complex) solutions for general values of the parameters. As in Sections 2.2 and 4.3.2, a
minimal problem gives rise to a branched cover π : M→ P , where base space P the problem
space and total spaceM (incidence variety) the problem-solution manifold. The number of
the solutions, which is the degree of the branched cover, is the degree of the problem.

Example 28. A classical minimal problem is computing the calibrated camera [42] from
three points in space and their image projections. A classical formulation [40] is as a system
of three quadratic polynomial equations

‖X1 −X2‖2 = ‖λ1x1 − λ2x2‖2

‖X2 −X3‖2 = ‖λ2x2 − λ3x3‖2

‖X3 −X1‖2 = ‖λ3x3 − λ1x1‖2

in three unknown depths λ1, λ2, λ3. The parameters are the three (i = 1, 2, 3) world points
points Xi ∈ R3 and the points xi = (xi1, xi2, 1)T ∈ R3 representing three images in P2.
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This formulation implicitly uses that R is orthogonal and preserves the norm. Recovery
of the camera C = [R | t] from the depths is an exercise in linear algebra.

This problem has degree eight. That is, for generic Xi and xi, i = 1, 2, 3, the system has
eight complex solutions[34]. In practice, there are fewer solutions with positive depths λi.
This gives a branched cover of degree eight over the problem manifold P ∼= C15. �

We formulate perhaps the most consequential of all 3D reconstruction problems.

Example 29. The 5pt problem of computing the relative pose of two calibrated cameras
from 5 point correspondences in two images is featured in Figure 12.

Consider (paired) images xi = (xi1, xi2, 1)T , yi = (yi1, yi2, 1)T and depths λi and µi, where
i = 1, . . . , 5, in the first and second cameras, respectively. Write down all or sufficiently
many of

(
5
2

)
same-distance equations

‖λixi − λjxj‖2 = ‖µiyi − µjyj‖2, (1 ≤ i < j ≤ 5) ,

between the image points, and one same-orientation equation

det[λ1x1 − λ2x2 | λ1x1 − λ3x3 | λ1x1 − λ4x4]
= det[µ1x1 − µ2x2 | µ1x1 − µ3x3 | µ1x1 − µ4x4] .

These determinants are the signed volume of the same tetrahedron (formed by the world
points X1, . . . , X4 in different coordinate frames). The equality of the volumes is implied
by the same-distance equations but not the equality of signs. Fix one depth, λ1 = 1, to fix
the ambiguity in scaling. This gives a system of equations in the remaining nine unknown
depths λ and µ.

The solution space is the space of vectors of non-fixed depths P = R9. The projection
from the incidence variety problem-solution mainfold to P gives a covering of degree 20. �

As in Section 4.3.2, we may analize the Galois group of the branched cover. Decompos-
ing a monodromy group of a minimal problem as shown in [29] may lead to an easier 3D
reconstruction. The classical epipolar geometry approach to the 5pt problem [42, Sect. 9] is
realized in this way. This gives a two-stage procedure for the relative pose recovery with the
essential stage being a problem of degree 10.

6.3.2. Engineering meets mathematics. The 5pt problem of Example 29 plays a practical
role in solvers for geometric optimization problems in vision based on RANSAC [35, 72].
This problem has many practical solutions based on or inspired by Gröbner basis techniques
that also use the epipolar geometry formulation [71].

Recently, homotopy continuation has found practical use for minimal problems whose
degrees are too high for efficient symbolic computation. The first step toward practical
fast computation was a special solver MINUS [32] based on Macaulay2 core C++ code
for homotopy continuation and optimized for performance on modern hardware. Featured
in [33], it is deployed on two minimal problems of degrees 216 and 312 involving point as
well as line correspondences. This computes all complex solutions and uses postprocessing
to filter out irrelevant solutions.

Unlike [33], the work in [48] combines a neural network classifier with homotopy continu-
ation. Rather than compute all solutions and then pick a relevant one, it follows only one
continuation path (over R). That strategy finds the relevant solution with high probability
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in several practical scenarios. It is comparable to state-of-art algorithms for the 5pt problem
and exceeds the performance for a 4pt problem. While matching four points in three cali-
brated views is not a minimal problem, there is a relaxation of degree 272 that is minimal,
and the solution of the relaxation may be verified by using the original (overdetermined)
formulation.
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92. , What is . . . a Gröbner basis?, Notices Amer. Math. Soc. 52 (2005), no. 10,
1199–1200.

93. Sascha Timme, Mixed precision path tracking for polynomial homotopy continuation,
Advances in Computational Mathematics 47 (2021), no. 5, 75.

94. Jan Verschelde, Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial
Systems by Homotopy Continuation, ACM Trans. Math. Softw. 25 (1999), no. 2, 251–
276.
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